99
Views
0
CrossRef citations to date
0
Altmetric
Section I: Piezoelectrics and Photovoltaics for Energy Harvesting and Conversion

Effect of sintering temperature on the structural and electrical properties of Na.47K.47Li.06NbO3 ceramics prepared by ceramic technique using high energy ball milling

&
Pages 152-159 | Received 10 Dec 2017, Accepted 16 Jul 2018, Published online: 16 Apr 2019

References

  • M. D. Maeder, D. Damjanovic and N. Setter, Lead free piezoelectric materials, J. Electroceramics. 13, 385–392 (2004).
  • A. Notghi, et al., Measuring SeHCAT retention, Nucl Med Commun. 32, 960–966 (2011).
  • P. K. Panda and B. Sahoo, PZT to lead free Piezo ceramics: A review, Ferroelectrics. 474, 128–143 (2015).
  • T. Takenaka and H. Nagata, Current status and prospects of lead-free piezoelectric ceramics, J. Eur. Ceram. Soc. 25, 2693–2700 (2005).
  • P. K. Panda, Review: environmental friendly lead-free piezoelectric materials, J. Mater. Sci. 44, 5049–5062 (2009).
  • A. Thongtha and T. Bongkarn, Optimum sintering temperature for fabrication of lead-free ceramics by combustion technique, Key Eng. Mater. 474–476, 1754–1759 (2011).
  • H. Wang, et al., Densification behavior, microstructure, and electrical properties of sol–gel-derived niobium-doped (Bi0.5Na0.5)0.94Ba0.06TiO3 ceramics, J. Mater. Sci. 45, 3677–3682 (2010).
  • J. Xing, et al., Phase transition and piezoelectric properties of Nd3+ doped nonstoichiometric (K,Na)NbO3 -based lead free ceramics, Appl. Phys. Lett. 110, 22905 (2017).
  • Y. Guo, K. Kakimoto and H. Ohsato, Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics, Appl. Phys. Lett. 85, 4121–4123 (2004).
  • P. D. Gio and N. D. Phong, Effects of LiF on the structure and electrical properties of; lead-free piezoelectric ceramics sintered at low temperatures, J. Mater. Sci. Chem. Eng. 3, 13–20 (2015).
  • S. P. Machado, et al., Evaluation of the performance of a lead-free piezoelectric material for energy harvesting, Smart Mater. Struct. 24, 115011 (2015).
  • X. Cheng, et al., Lead-free piezoelectric ceramics based on (0.97 − x)K0.48Na0.52NbO3-0.03Bi0.5(Na0.7K0.2Li0.1)0.5ZrO3-xB0.5Na0.5TiO3 ternary system, J. Appl. Phys. 114, 124107 (2013).
  • Y. S. Sung, et al., Enhanced piezoelectric properties of (Na0.5+y + z K0.5−y)(Nb1−xTax)O3 ceramics, Appl. Phys. Lett. 101, 12902 (2012).
  • Z.-Y. Shen, et al., Influence of sintering temperature on grain growth and phase structure of compositionally optimized high-performance Li/Ta-Modified (Na,K)NbO3 Ceramics, J. Am. Ceram. Soc. 92, 1748–1752 (2009).
  • Y. Saito, et al., Lead-free piezoceramics, Nature. 432, 84–87 (2004).
  • T. Zheng, et al., The structural origin of enhanced piezoelectric performance and stability in lead free ceramics, Energy Environ Sci. 10, 528–537 (2017).
  • K. Wang and J.-F. Li, Domain engineering of lead-free Li-modified (K,Na)NbO3 polycrystals with highly enhanced piezoelectricity, Adv. Funct. Mater. 20, 1924–1929 (2010).
  • L. Q. Cheng, et al., Composition inhomogeneity due to alkaline volatilization in Li-modified (K, Na) NbO3 lead-free piezoceramics, J. Am. Ceram. Soc. 96 (9), 2693–2695 (2013).
  • W. Wu, et al., Temperature stability, phase structure and electrical behavior of Li-modified 0.99(K0.48Na0.52)NbO3–0.01BiCoO3 piezoelectric ceramics, Ceram Int. 40, 1133–1137 (2014).
  • Z. Feng and S. W. Or, Phase transition-induced high electromechanical activity in [(K0.5Na0.5)1−xLix](Nb0.8Ta0.2)O3 lead-free ceramic system, J. Alloys. Compd. 480, L5–L8 (2009).
  • M. A. Wahab, Solid state physics: Structure and properties of materials (Alpha Science International, Oxford, UK, 2005).
  • C. Wattanawikkam, S. Chootin, and T. Bongkarn, Crystal structure, microstructure, dielectric and piezoelectric properties of lead-free KNN ceramics fabricated via combustion method, Ferroelectrics. 473, 24–33 (2014).
  • E. M. Alkoy, A. B. Yavuz and S. Alkoy, Electrical properties and impedance spectroscopy of lithium modified potassium sodium niobate ceramics, Ferrroelectrics. 447, 95–107 (2013).
  • K. W. Wagner, Electricity and magnetism, Ann. Phy. Leipzig. 40, 817–820 (1913).
  • J. C. Maxwell, Electricity and magnetism (Oxford University Press, Oxford, UK, 1929).
  • C. C. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies, Phys. Rev. 83, 121–124 (1951).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.