Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 192, 2018 - Issue 1
136
Views
0
CrossRef citations to date
0
Altmetric
Articles

Effect of BCT-BZT ceramic loading on dielectric properties of natural rubber composites

&
Pages 130-140 | Received 18 Dec 2017, Accepted 08 Jul 2018, Published online: 26 Feb 2019

References

  • Q.G. Chi, et al., Effect of particle size on the dielectric properties of 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.8)TiO3/polyvinylidence fluoride hybrid films. Ceram. Int. 41, 15116–1521 (2015).
  • C. Zhang, et al., Enhance dielectric properties of poly(vinylidence fluoride) composites filled with nano iron oxide-deposited barium titanate hybrid particles. Sci. Rep. 6, 33508 (2016).
  • S. Salaeh, et al., Ceramic/natural rubber composites: influence types of rubber and ceramic materials on curing, mechanical, morphological and dielectric properties. J. Mater. Sci. 46, 1723–1731 (2011).
  • M.A. Soloman, P. Kurian and M.R. Anantharaman, Dielectric and mechanical properties of rubber ferrite composites containing barium ferrite. Prog. Rubber. Plast. Res. 18, 269–282 (2002).
  • M.H. Makled, Dielectric properties of high coercivity barium ferrite-natural rubber composites. J. Appl. Polym. Sci. 129, 969–973 (2012).
  • C.K. Chiang and R. Popielarz, Polymer composite with high dielectric constant. Ferroelectrics 275, 1–9 (2002).
  • V.V. Tchmyreva, A.T. Ponomarenko and V.G. Shevchenko, Electrophysical properties of polymer based composites with barium titanate (BaTiO3). Ferroelectrics 307, 233–242 (2004).
  • Z.M. Dang, Y. Zheng and H.P. Xu, Effect of the ceramic particle size on the microstructure and dielectric properties of barium titanate/polystyrene composites. J. Appl. Polym. Sci. 110, 3473–3479 (2008).
  • R.K. Goyal, S.S. Katkade and D.M. Mule, Dielectric, mechanical and thermal properties/BaTiO3 composites for embedded capacitor. Compos. Part B. 44, 128–132 (2013).
  • R. Abraham, et al., Mechanical properties of ceramic-polymer nanocomposites. Express Polym. Lett. 3, 177–198 (2003).
  • T. Li, et al., Dielectric properties of CaCu3Ti4O12-silicone rubber composites. J. Mater.Sci: Mater. Electron. 26, 312–316 (2003).
  • I.A. Santos, et al., Dielectric and structural features of the environmentally friendly lead-free PVDF/Ba0.3Na0.7Ti0.3Nb 0.7 O3 0-3 composite, Curr. Appl. Phys. 16,1468–1472 (2016).
  • A. Kaushal, et al., Successfully aqueous processing of a lead free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 piezoelectric material composition. RSC Adv.4, 26993–27002 (2004).
  • W. Liu and X. Ren, Large piezoelectric effect in Pb-free ceracmics. Phys. Rev. Lett. 30, 25702(4) (2009).
  • S. Hunpratub, S. Maensiri and P, Chindaprasirt. Synthesis and characterization of Ba0.85Ca0.15Ti0.9Zr0.1O3 ceramics by hydrothermal method. Ceram. Int. 40, 13025–13031 (2014).
  • J.P. Praveen, et al., Large piezoelectric strain observed in sol-gel derived BZT-BCT ceramics. Curr. Appl. Phys. 14, 396–402 (2014).
  • P. Mishra and P. Kumar, Structural, dielectric and optical properties of [(BZT-BCT)-(epoxy-CCTO)] composites. Ceram.Int. 41, 2727–2734 (2015).
  • S. Adireddy, et al., Polymer-ceramic nanocomposites for high energy density applications. J.Sol-Gel.Sci.Technol.73, 641–646 (2015).
  • V. S, Puli, et al., Core-shell like structured barium zirconium titanate-barium calcium titanate poly(methyl methacrylate) nanocomposites for dielectric energy storage capacitors. Polymer 105, 35–42 (2016).
  • S. Matchawet, et al., Electrical, dielectric, and dynamic mechanical properties of conductive carbon black/epoxidized natural rubber composites. J. Compos. Mater. 50, 2191–2202 (2015).
  • S. Utara, P. Jantachump and B. Sukkaneewat, Effect of surface modification of silicon carbide nanoparticles on the properties of nanocomposites based on epoxidized natural rubber/natural rubber blends. J. Appl. Polym. Sci. 134, 45289 (2017).
  • S. Hunpratub, et al., Dielectric properties of 0–3BCTZO/high calcium fly ash geopolymer composites. Ferroelectrics Lett. 42, 115–121 (2015).
  • M. Arroyo, et al., Morphology/behaviour relationship of nanocomposites based on natural rubber/epoxidized natural rubber blends. Compos. Sci. Technol. 67, 1330–1339 (2007).
  • E.Chandrakala, et al., Effect of sintering temperature on structural, dielectric, piezoelectric and ferroelectric properties of sol-gel derived BCT-BCT ceramics. Ceram. Int. 42, 4964–4977 (2016).
  • M. Wang, et al., Synthesis and characterization of sol-gel derived (Ba, Ca)(Ti, Zr)O3 nanoparticle. J. Meter. Sci: Mater. Electron. 23, 753–757 (2012).
  • S. Utara, and S. Hunpratub, Ultrasonic assisted synthesis of BaTiO3 nanoparticles at 25 °C and atmospheric pressure, Ultrason. Sonochem. 41, 441–448 (2018).
  • S.J, Chang, et al., An efficient approach to derive hydroxyl groups on the surface of barium titanate nanoparticles to improve its chemical modification ability. J. Colloid Interface Sci. 329, 300–305 (2009).
  • S. Utara and J. Klinkaewnarong, Synthesis and characterization of hydroxyapatite nanoparticles templated by ozonolysed natural rubber latex. J. Sol-Gel Sci. Technol. 80, 728–737 (2016).
  • O. Vryonis, et al., Dielectric response and molecular dynamics in epoxy-BaSrTiO3nanocomposites: Effect of nanofiller loading. Polymer 95, 82–90 (2016).
  • R. Popielarz, et al., Dielectric Properties of Polymer/Ferroelectric Ceramic Composites from 100 Hz to 10 GHz. Macromolecules 34, 5910–5915 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.