Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 192, 2018 - Issue 1
44
Views
2
CrossRef citations to date
0
Altmetric
Articles

Analysis of saturation currents and barrier height of Ta2O5 doped based on Ba0,5S0,5TiO3 photodiode

, , &
Pages 164-177 | Received 28 Mar 2018, Accepted 30 Aug 2018, Published online: 26 Feb 2019

References

  • A. Kurniawan et al., Development and application of Ba0.5Sr0.5TiO3 (BST) thin film as temperature sensor for satellite technology. Procedia Environ. Sci. 24, 335–339 (2015).
  • Irzaman et al., Characterization of Ba0,55Sr0,45TiO3 films as light and temperature sensors and its implementation on automatic drying system model. Integrated Ferroelectrics. 168, 130–150 (2016).
  • I. Novianty et al., Electrical properties Fe2O3 doped based Ba0,5Sr0,5TiO3 thin film as light sensor. Indonesian Journal of Materials Science. 452, 9–12 (2010).
  • Irzaman et al., Development of ferroelectric solar cells of barium strontium Titanate (BaxSr1-xTiO3) for subtituting conventional battery in LAPAN-IPB Satellite (LISAT). Procedia Environmental Sciences. 33, 607–614 (2016).
  • L. Singh, B Kaur, N. Dabra. 2014. Composites of ferroelectric ceramics and polymers-a potential source of non-volatile memory. Int. J. Eng. Sci. 3, 115–118.
  • A. Cihangir. Antenna designs using matching circuits for 4G communicating devices. Université de Nice-Sophia-Antipolis. 30, 121–126 (2014).
  • B. R Kumar, T. S Rao. High-k gate dielectrics of thin films with its technological applications–a review. Int. J. Pure Appl. Sci. Technol. 4 (2), 105–114 (2011).
  • http://booksite.elsevier.com/9781437778731/past_edition_chapters/Metal_Organic_Chemical_Vapor.pdf. 20 December, 2017.
  • T. Katase et al., Thin film growth by pulsed laser deposition and properties of 122-type iron-based superconductor AE(Fe1–xCox)2As2 (AE = alkaline earth). IOP Conf. Series: Earth and Environ. Sci. 25 (8), 084015 (2012).
  • X. H. Zhu et al., Enhanced dielectric properties of Mn doped Ba0.6Sr0.4TiO3 thin films fabricated by pulsed laser deposition. Mater. Lett. 60, 1224–1228 (2006)
  • M. Ozimek, W. Wilczynski, and B. Szubzda. Magnetic thin film deposition with pulsed magnetron sputtering: deposition rate and film thickness distribution. IOP Conf. Ser.: Mater. Sci. Eng. 113, 0120 (2016).
  • D. K. Maurya, A. Sardarinejad and K. Alameh. Recent developments in R.F. magnetron sputtered thin films for pH sensing applications—an overview. Coatings. 4, 756–771 (2014).
  • W. R. Schwartz, et al., Sol-gel processing of Pzt thin films: a review of the state-of-the-art and process optimization strategies. Integr. Ferroelectr. 7, 259–277 (1995).
  • T. Schneller, R. Waser. Chemical solution deposition of ferroelectric thin films – state of the art and recent trends. Integr. Ferroelectr. 267 (1), 293–301 (2002).
  • M. Hikam et al., Pyroelectric properties of lead zirconium titanate (Pbzr0.525Ti0.475O3) metal ferroelectric-metal capacitor and its application for Ir sensor. Indones. J. Mater. Sci. 6 (3), 23–27 (2005).
  • H. W Wang et al., Improvement in crystallization and electrical properties of barium strontium titanate thin films by gold doping using metal-organic deposition method. Thin Solid Film. 489, 31–36 (2005).
  • M. C Chiu et al., Improvement of dielectric properties Ba0.6Sr0.4TiO3 thin films by MgO doping. J. Appl. Phys. 102, 014110-1-8 (2007).
  • Y. C Chen, C. L. Huang. Dielectric constant tunability of ZrO2-doped barium strontium titanate for application in phased array antennas Mater. Lett. 60, 451–454 (2006).
  • A. Setiawan et al., Optical and electrical characterizations of niobium-doped Ba0.25Sr0.75 TiO3 (BSNT) on p-type silicon and corning glass substrates and its implementation as photodiode on satellite of LAPAN – IPB. Procedia Environ Sci. 33, 620–625 (2016).
  • Photodiode Characteristics and Applications. 2006. http://www.osioptoelectronics.com/application-notes/an-photodiode-parameters-characteristics.pdf
  • N. G. Pamungkas et al., Optical properties of Cu and Ru doped BST thin films with additive glycerol and MESA surfactant. IOP Conf. Series: Earth Environ. Sci. 65, 012031 (2017).
  • M. Tahir et al., The electrical characterization of Ag/PTCDA/PEDOT:PSS/p-Si Schottky diode by current–voltage characteristics. Physica B. 415, 77–81 (2013).
  • Irzaman et al., The effect of Ba/Sr ratio on electrical and optical properties of BaxSr(x = 0.25; 0.35; 0.45; 0.55)1-x)TiO3 thin film semiconductor. Ferroelectrics. 445, 4–17 (2013).
  • P. A. Tippler, PHYSICS for Scientist and Engineers. New York: Worth Publisher, Inc., (1991).
  • N. Sirikulrat, Power series fitting of current–voltage characteristics of Al doped ZnO thin film-Sbdoped (Ba0.8Sr0.2)TiO3 heterojunction diode. Thin Solid Films. 520, 3703–3707 (2012)
  • V. Aubry and F. Meyer, Schottky diodes with high series resistance: Limitations of forward I–V methods. J. Appl. Phys. 50, 5052 (1979).
  • S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981), Vol. 87.
  • H. K. Henisch, Semiconductor Contacts. (Clarendon, Oxford 1984) Chap. 3; Ref. [1], Chap. 5.
  • H. Norde, A modified forward I–V plot for Schottky diodes with high series resistance. J. Appl. Phys. 50, 5052 (1979).
  • N. Sirikulat. Platinum thin film–antimony doped barium strontium titanate Schottky barrier diode. Appl. Phys. Lett. 92: 062115 (2008).
  • R. Maharsi et al., Crystalline characterization and dielectric constant of barium strontium titanates prepared by solid state reaction. Adv. Mater. Res. 1123, 123–126 (2012).
  • T. Remmel, R. Gregory, and B. Baumert, Characterization of barium strontium titanate films using XRD. Advances in X-ray Analysis. 41, 38–45 (1999).
  • G. Wang et al., The error analysis of the reverse saturation current of the diode in the modeling of photovoltaic modules. Energy. 115, 478–485 (2016).
  • N. Sirikulrat, Colossal dielectric constant and a microfarad tunable capacitance in platinum thin film-antimony doped barium strontium titanate Schottky barrier diodes. Thin Solid Films. 520, 633–640 (2011).
  • J. H Werner. Schottky barrier and pn-Junction I/V Plots-small signal evaluation. Appl. Phs. A. 47, 291–300 (1988).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.