Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 192, 2018 - Issue 1
163
Views
1
CrossRef citations to date
0
Altmetric
Articles

Thin film bulk acoustic wave piezoelectric resonators with circular ring driving electrodes for mass sensing

, , &
Pages 57-66 | Received 24 Jul 2017, Accepted 14 Jan 2018, Published online: 26 Feb 2019

References

  • V. E. Bottom, Introduction to Quartz Crystal Unit Design (Van Nostrand Reinhold, New York 1982).
  • D. Salt, Hy-Q Handbook of Quartz Crystal Devices (Van Nostrand Reinhold, Wokingham 1987).
  • C. K. Campbell, Surface Acoustic Wave Devices for Mobile and Wireless Communications (Academic Press, Orlando 1998).
  • K. Hashimoto, and K. Y. Hashimoto, Surface Acoustic Wave Devices in Telecommunications (Springer, Heidelberg 2000).
  • K. M. Lakin, Thin film resonators and filters, Proceedings of 1999 IEEE Ultrasonics Symposium, Lake Tahoe, USA, pp. 895–906, 1999.
  • G. F. Iriarte, F. Engelmark, and I. V. Katardjiev, Reactive sputter deposition of highly oriented AlN films at room temperature. J. Mater. Res. 17, 1469–1475(2002).
  • F. Martin et al., Shear mode coupling and tilted grain growth of AlN thin films in BAW resonators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 53, 1339–1443 (2006).
  • K. M. Lakin, G. R. Kline, and K. T. McCarron, Development of miniature filters for wireless applications. IEEE Trans. Microw. Theory Tech. 43, 2933–2939 (1995).
  • Y. Satoh et al., Development of piezoelectric thin film resonator and its impact on future wireless communication systems. Jpn. J. Appl. Phys. 44 (1), 2883–2894 (2005).
  • M. Link et al., Solidly mounted ZnO shear mode film bulk acoustic wave resonators for sensing applications in liquids. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 53, 492–496 (2006).
  • Y. Q. Fu et al., Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review. Sens. Actuators B Chem. 143, 606–619 (2010).
  • H. F. Zhang, and Y. Y. Bao, Sensitivity analysis of multi-layered C-axis inclined zigzag zinc Oxide thin-film resonators as viscosity sensors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 61, 525–534 (2014).
  • G. Sauerbrey, Verwendung von schwingquarzen zur wägung dünner schichten und zur mikrowägung. Zeitschrift für Physik. 155, 206–222 (1959).
  • A. Ballato and T. J. Lukaszek, Mass-loading of thickness-excited crystal resonators having arbitrary piezo-coupling. IEEE Trans. Sonics Ultrason. 21, 269–274 (1974).
  • J. R. Vig, and A. Ballato, Comments about the effects of nonuniform mass loading on a quartz crystal microbalance. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 45, 1123–1124 (1998).
  • N. Liu, J. S. Yang, and W. Q. Chen, Effects of a mass layer with gradually varying thickness on a quartz crystal microbalance. IEEE Sensors J. 11, 1635–1639 (2011).
  • N. Liu, J. S. Yang, and W. Q. Chen, Effects of mass layer nonuniformity on a quartz crystal microbalance. IEEE Sensors J. 11, 934–938 (2011).
  • P. J. Cumpson and M. P. Seah, The quartz crystal microbalances; radial/polar dependence of mass sensitivity both on and off the electrodes. Meas Sci Technol. 1, 544–555 (1990).
  • K. Nakamura et al., Trapped-energy piezoelectric resonators with elliptical ring electrodes, Proceedings of the 44th Annual Frequency Control Symposium, Baltimore, MD, pp. 372–377, 1990.
  • A. Richardson et al., Patterned electrodes for thickness shear mode quartz resonators to achieve uniform mass sensitivity distribution. IEEE Sensors J. 12, 1772–1777 (1998).
  • F. Josse et al., Analysis of the radial dependence of mass sensitivity for modified-electrode quartz crystal resonators. Anal. Chem. 70, 237–247 (1998).
  • J. Detaint, B. Capelle, and Y. Epelboin, Energy trapping in extensional thin film MEMS resonators and applications to filtering at UHF frequencies, Proceedings of IEEE International Frequency Control Symposium, Geneva, Switzerland, pp. 194–198, 2007.
  • J. Detaint and B. Capelle, Direct and inverse energy trapping in the thin film resonators and optimization of their designs, Proceedings of IEEE International Frequency Control Symposium, Honolulu, Hawaii, USA, pp. 19–24, 2008.
  • J. J. Shi et al., Thickness-shear vibration characteristics of an AT-cut quartz resonator with rectangular ring electrodes. Int. J. Appl. Electromagn. Mech. 51, 1–10 (2016).
  • Z. N. Zhao, Z. H. Qian, and B. Wang, Vibration optimization of ZnO thin film bulk acoustic resonator with ring electrodes. AIP Adv. 6, 1735–1739 (2016).
  • Y. J. Li et al., Lateral mode suppression and experiment for the ZnO ring thin-film acoustic resonator. Acta Phys. 64, 224601 (2015).
  • H. F. Tiersten and D. S. Stevens, An analysis of thickness-extensional trapped energy resonant device structures with rectangular electrodes in the piezoelectric thin film on silicon configuration. J. Appl Phys. 54, 5893–5910 (1983).
  • Z. N. Zhao et al., Energy trapping of thickness-extensional modes in thin film bulk acoustic wave resonators. J. Mech. Sci. Technol. 29, 2767–2773 (2015).
  • Z. N. Zhao, Z. H. Qian and B. Wang, Energy trapping of thickness-extensional modes in thin film bulk acoustic wave filters. AIP Adv. 6, 993–995 (2016).
  • J. Liu et al., Long thickness-extensional waves in thin film bulk acoustic wave filters affected by interdigital electrodes. Ultrasonics. 75, 226–232 (2017).
  • B. A. Auld, Acoustic Fields and Waves in Solids (John Willey and Sons, New York 1973), pp. 357–382.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.