Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 192, 2018 - Issue 1
110
Views
1
CrossRef citations to date
0
Altmetric
Articles

Electromagnetic radiation detection in 0-3 cement-PZT composite under impact loading

, , &
Pages 67-79 | Received 24 Sep 2017, Accepted 17 Mar 2018, Published online: 26 Feb 2019

References

  • P. J. Shull. Non-destructive Evaluation: Theory, Techniques, and Applications (CRC press, Boca Raton, FL 2016).
  • L. W. Schmerr. Jr, An Ultrasonic System in Fundamentals of Ultrasonic Non-destructive Evaluation (Springer International Publishing, New York, NY, p. 1–13, 2016).
  • A. Behnia, H. K. Chai, T. Shiotani, Advanced structural health monitoring of concrete structures with the aid of acoustic emission, Constr. Build. Mater. 65, 282 (2014).
  • D. G. Aggelis, A. Mpalaskas, T. Matikas, Investigation of different fracture modes in cement-based materials by acoustic emission, Cem. Concr. Res. 48, 1 (2013).
  • J. A. Bogas, M. G. Gomes, A. Gomes, Compressive strength evaluation of structural lightweight concrete by non-destructive ultrasonic pulse velocity method, Ultrasonics 53 (5), 962 (2013).
  • D. Wang, H. Zhu, Monitoring of the strength gain of concrete using embedded PZT impedance transducer, Constr. Build. Mater. 25 (9), 3703 (2011).
  • S. W. Shin, T. K. Oh, Application of electro-mechanical impedance sensing technique for online monitoring of strength development in concrete using smart PZT patches, Constr. Build. Mater. 23 (2), 1185 (2009).
  • B. Glisic, D. Inaudi, Fibre optic methods for structural health monitoring (John Wiley & Sons, Chichester, UK 2008).
  • J. M. W. Brownjohn, Structural health monitoring of civil infrastructure, Philos. Trans. Roy. Soc. London Ser. A. 365 (1851), 589 (2007).
  • D. D. Chung, Composites get smart, Mater. Today 5 (1), 30 (2002).
  • J. P. Lynch, An overview of wireless structural health monitoring for civil structures, Philos. Trans. Roy. Soc. London Ser. A. 365 (1851), 345 (2007).
  • Y. Y. Lim, et al., Non-destructive concrete strength evaluation using smart piezoelectric transducer – a comparative study, Smart Mater. Struct. 25 (8), 085021 (2016).
  • V. Talakokula, S. Bhalla, Non – destructive strength evaluation of fly ash based geopolymer concrete using piezo sensors, Procedia Eng. 145, 1029 (2016).
  • H. H. Pan, D. H. Lin, R. H. Yang, High piezoelectric and dielectric properties of 0-3 PZT/cement composites by temperature treatment, Cement Concr. Comp. 72, 1 (2016).
  • Z. Wang, et al., Micro scaled size- dependence of the effective properties of 0-3 PZT – cement composites: Experiments and Modelling, Comp. Sci. Technol. 105, 183 (2014).
  • S. Banerjee, J. Torres, and K. A. Cook-Chennault, Piezoelectric and dielectric properties of PZT – cement – aluminium nano-composites, Ceram. Int. 41 (1), 819 (2015).
  • H. Y. Liu, et al., Cement – sand based piezoelectric smart composites, Appl. Mech. Mater. 392, 9 (2013).
  • F. Wang, et al., High piezoelectricity 0-3 cement based piezoelectric composites. Mater. Lett. 76, 208 (2012).
  • B. Dong, F. Xing, Z. Li, Electrical response of cement based piezoelectric ceramic composites under mechanical loading, Smart Mater. Res. 2011, 1 (2011).
  • A. Chaipanich, et al., Aging of 0-3 piezoelectric PZT ceramic-Portland cement composites. Ceram. Int. 40 (8), 13579 (2014).
  • A. Chaipanich. Dielectric and piezoelectric properties of PZT- cement composites. Current Appl. Phys. 7 (5), 537 (2007).
  • B. Dong, and Z. Li, Cement- based piezoelectric ceramic smart composites, Comp. Sci. Technol. 65 (9), 1363 (2005).
  • S. Huang, et al., Piezoelectric properties of 0-3 PZT/sulfoaluminate cement composites. Smart Mater. Struct. 13 (2), 270 (2004).
  • Z. Li, D. Zhang, and K. Wu. Cement based 0-3 piezoelectric composites. J. Am. Ceramic Soc. 85 (2), 305 (2004).
  • Z. Li, D. Zhang, and K. Wu. Cement based smart material-cement matrix composites. Concr. Sci. Eng. 3, 116 (2001).
  • S. Wen, and D. D. L. Chung. Piezoelectric cement based materials with large coupling and voltage coefficients. Cement Concr. Res. 32 (3), 335 (2002).
  • B. Dong, et al., Study on the microstructure of cement – based piezoelectric ceramic composites. Constr. Build. Mater. 72, 133 (2014).
  • N. Jaitanong, et al., Interfacial morphology and domain configurations in 0-3 PZT- Portland cement composites. Appl. Surf. Sci. 256 (10), 3245 (2010).
  • F. Xing, B. Dong, and Z. Li. The study of pore structure and its influence on material properties of cement – based piezoelectric ceramic composites. Constr. Build. Mater. 23 (3), 1374 (2009).
  • A. Chaipanich, N. Jaitanong, and R. Yimnirun. Ferroelectric hysteresis behaviour in 0-3 PZT-cement composites: Effects of frequency and electric field. Ferroelectric Lett. 36 (3–4), 59 (2009).
  • X. Dongyu, et al., Design, fabrication, and properties of 2-2 connectivity cement/polymer based piezoelectric composites with varied piezoelectric phase distribution. J. Appl. Phys. 116 (24), 244103 (2014).
  • S. Kim, P. Zhao, and E. Enemuoh. Effect of carbon nanotubes on properties of cement – sand based piezoelectric composites. SPIE Smart Structures and Materials + Non-destructive Evaluation and Health Monitoring, International Society for Optics and Photonics, p. 943208–943208 (2015).
  • N. Jaitanong, et al., Piezoelectric properties of cement based PVDF/PZT composites. Mater. Lett. 130, 146 (2014).
  • S. Banerjee, and K. A. Cook-Chennault. Influence of aluminium inclusions on dielectric properties of three phase PZT-cement-aluminium composites. Adv. Cement Res. 26 (2), 63 (2014).
  • H. Gong, Y. Zhang, and S. Che. Influence of carbon black on properties of PZT-cement piezoelectric composites. J. Composite Mater. 44 (23), 2747 (2010).
  • H. Gong, et al., Piezoelectric and dielectric behaviour of 0-3 cement-based composites mixed with carbon black. J. Eur. Ceramic Soc. 29 (10), 2013 (2009).
  • H. Guan, et al., Cement based electromagnetic shielding and absorbing building materials. Cement Concr. Comp. 28 (5), 468 (2006).
  • A. Misra, et al., A theoretical model for the electromagnetic radiation emission during plastic deformation and crack propagation in metallic materials. Int. J. Fract. 145 (2), 99 (2007).
  • V. S. Chauhan, and A. Misra. Electromagnetic radiation during plastic deformation under unrestricted quasi-static compression in metals and alloys. Int. J. Mater. Res. 101 (7), 857 (2010).
  • A. Kothari, et al., Effect of Peierls stress and strain – hardening parameters on EMR emission in metals and alloys during progressive plastic deformation. Int. J. Mater. Res. 107 (6), 503 (2016).
  • A. Kothari, et al., Effect of strain hardening on the electromagnetic radiation during plastic deformation of metals and alloys beyond yield point. Nonlinear Dyn. 85 (4), 2687 (2016).
  • S. O. Gade, and M. G. R. Sause. Measurement and study of electromagnetic emission generated by tensile fracture of polymers and carbon fibres. J. Non-Destruct. Eval. 36 (1), 9 (2017).
  • B. Kong, et al., Electromagnetic radiation characteristics and mechanical properties of deformed and fractured sandstone after high temperature treatment. Eng. Geology 209, 82 (2016).
  • S. Hu, et al., Time-varying multifractal characteristics and formation mechanism of loaded coal electromagnetic radiation. Rock Mech. Rock Eng. 47 (5), 1821 (2014).
  • S. O. Gade, et al., Relation of electromagnetic emission and crack dynamics in epoxy resin materials. J. Nondestruct. Eval. 33 (4), 711 (2014).
  • H. Gong, et al., Preparation and properties of cement based piezoelectric composites modified by CNTs. Current Appl. Phys. 11 (3), 653 (2011).
  • N. Jaitanong, A. Chaipanich, T. Tunkasiri. Properties of 0-3 PZT-Portland cement composites. Ceram. Int. 34 (4), 793 (2008).
  • A. Chaipanich, N. Jaitanong, and T. Tunkasiri. Fabrication and properties of PZT-ordinary Portland cement composites. Mater. Lett. 61 (30), 5206 (2007).
  • A. Kumar, et al., Deformation induced electromagnetic response of soft and hard PZT under impact loading. Ferroelectrics 510 (1), 170 (2017).
  • T. C. Powers. Structure and physical properties of hardened Portland cement paste. J. Am. Ceramic Soc. 41 (1), 1 (1958).
  • S. W. Tang, et al., Impedance measurement to characterize the pore structure in Portland cement paste. Constr. Build. Mater. 51, 106 (2014).
  • M. Sun, Z. Li, X. Song. Piezoelectric effect of hardened cement paste. Cement Concr. Comp. 26 (6), 717 (2004).
  • F. Rajabipour, J. Weiss. Electrical conductivity of drying cement paste. Mater. Struct. 40 (10), 1143 (2007).
  • H. W. Whittington, J. McCarter, M. C. Forde. The conduction of electricity through concrete. Magazine Concr. Res. 33 (114), 48 (1981).
  • D. Griffiths. Introduction to elementary particles (John Wiley and Sons, Weinheim, Germany 2008).
  • D. J. Griffiths. Introduction to electrodynamics (Prentice Hall, Upper Saddle River, NJ, p. 609 1962).
  • S. Haykin, and B. V. Veen. Signals and Systems (John Wiley and Sons, New York, NY 2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.