46
Views
1
CrossRef citations to date
0
Altmetric
Articles

The study of trivalent-dopants effect on electrical properties of the BaZr0.7In0.3O3-δ system

, , , &
Pages 109-118 | Received 31 Oct 2017, Accepted 22 Jun 2018, Published online: 07 May 2019

References

  • Y. Song et al., Colossal dielectric permittivity in (Al + Nb) co-doped rutile SnO2 ceramics with low loss at room temperature, Appl. Phys. Lett. 109(14), 142903 (2016). DOI: 10.1063/1.4964121.
  • S. Huang et al., High-temperature colossal dielectric response in RFeO3 (R = La, Pr and Sm) ceramics, Ceram. Int. 41(1), 691 (2015). DOI: 10.1016/j.ceramint.2014.08.124.
  • P. H. Salame, O. Prakash, and A. R. Kulkarni, Colossal dielectric response of mott insulating, nanocrystalline, T′-type Sm2CuO4 ceramics, Ceram. Int. 43(16), 14101 (2017). DOI: 10.1016/j.ceramint.2017.07.147.
  • M. A. Subramanian et al., High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases, J. Solid State Chem. 151(2), 323 (2000). DOI: 10.1006/jssc.2000.8703.
  • B. G. Kim, S. M. Cho, T. Y. Kim, and H. M. Jang, Giant dielectric permittivity observed in Pb-based perovskite ferroelectrics, Phys. Rev. Lett. . 86(15), 3404 (2001).
  • L. E. Cross, Relaxor ferroelectrics, Ferroelectrics. 76(1), 241 (1987). DOI: 10.1080/00150198708016945.
  • P. Liang, Y. Zupei, and C. Xiaolian, Improved dielectric properties and grain boundary response in neodymium-doped Y2/3Cu3Ti4O12 ceramics, J. Alloys Compd. 678, 273 (2016). DOI: 10.1016/j.jallcom.2016.03.294.
  • J. Zhang et al., Giant dielectric behavior in CaLaAlO4 ceramics, Mater. Lett. 168(Supplement C), 163 (2016). DOI: 10.1016/j.matlet.2016.01.043.
  • L. Tong et al., High-temperature colossal dielectric behavior of BaZrO3 ceramics, RSC Adv. 7(54), 33708 (2017). DOI: 10.1039/C7RA06401B.
  • F. Emiliana et al., Chemically stable Pr and Y co-doped barium zirconate electrolytes with high proton conductivity for intermediate-temperature solid oxide fuel cells, Adv. Funct. Mater. 21, 158 (2001).
  • C. S. Tu et al., Thermal stability of Ba(Zr0.8-xCexY0.2)O2.9 ceramics in carbon dioxide, J. Appl. Phys. 105(10), 103504 (2009). DOI: 10.1063/1.3117835.
  • K. D. Kreuer et al., Proton conducting alkaline earth zirconates and titanates for high drain electrochemical applications, Solid State Ionics. 145(1–4), 295 (2001). DOI: 10.1016/S0167-2738(01)00953-5.
  • S. Imashuku et al., Dependence of dopant cations on microstructure and proton conductovoty of barium zirconate, J. Electrochem. Soc. 156(1), B1 (2009). DOI: 10.1149/1.2999335.
  • I. Ahmed et al., Proton conductivity and low temperature structure of In-doped BaZrO3, Solid State Ion. 177(26–32), 2357 (2006). DOI: 10.1016/j.ssi.2006.05.030.
  • S. Wenping, Z. Zhiwen, S. Zhen, and L. Wei, Chemical stable and easily sintered high-temperature proton conductor BaZr0.8In0.2O3-δ for solid oxide fuel cells, J. Power Sources. 229, 95 (2013).
  • B. Yang, M. Ales, H. Hana, and W. B. Tim, Low-temperature sintering of (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 ceramics and thick-films, IEEE Xplore. 60 (2015).
  • P. Lunkenheimer et al., Colossal dielectric constants in transition-metal oxides, Eur. Phys. J. Spec. Top. 180(1), 61 (2009). DOI: 10.1140/epjst/e2010-01212-5.
  • R. Viana et al., Dielectric spectroscopy in SrTiO3, Phys. Rev., B Condens. Matter. 50(1), 601 (1994).
  • W. Zhong, and D. Vanderbilt, Effect of quantum fluctuations on structural phase transitions in SrTiO3 and BaTiO3, Phys. Rev. B. 53(9), 5047 (1996). DOI: 10.1103/PhysRevB.53.5047.
  • S. Krohns, P. Lunkenheimer, S. G. Ebbinghaus, and A. Loidl, Colossal dielectric constants in single-crystalline and ceramic CaCu3Ti4O12 investigated by broadband dielectric spectroscopy, J. Appl. Phys. 103(8), 084107 (2008). DOI: 10.1063/1.2902374.
  • J. S. Park et al., Effect of cation non-stoichiometry and crystallinity on the ionic conductivity of atomic layer deposited Y:BaZrO3 films, Thin Solid Films. 539(Supplement C), 166 (2013). DOI: 10.1016/j.tsf.2013.05.092.
  • S. M. Haile, G. Staneff, and K. H. Ryu, Non-stoichiometry, grain boundary transport and chemical stability of proton conducting perovskites, J. Mater Sci. 36(5), 1149 (2001). DOI: 10.1023/A:1004877708871.
  • O. J. Durá et al., Ionic conductivity of nanocrystalline yttria-stabilized zirconia: Grain boundary and size effects, Phys. Rev. B. 81, 184301 (2010).
  • D. Shima, and S. M. Haile, Influence of cation non-stoichiometry on the properties of undoped and gadolinia-doped barium cerate, Solid State Ion. 97(1–4), 443 (1997). DOI: 10.1016/S0167-2738(97)00029-5.
  • W. Sun, Z. Zhu, Z. Shi, and W. Liu, Chemically stable and easily sintered high-temperature proton conductor BaZr0.8In0.2O3-δ for solid oxide fuel cells, J. Power Sources. 229(Supplement C), 95 (2013). DOI: 10.1016/j.jpowsour.2012.12.017.
  • M. Gerstl et al., The separation of grain and grain boundary impedance in thin yttria stabilized zirconia (YSZ) layers, Solid State Ion. 185(1), 32 (2011). DOI: 10.1016/j.ssi.2011.01.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.