82
Views
1
CrossRef citations to date
0
Altmetric
Articles

Enhancement of ferroelectric phase and dielectric properties of P(VDF-HFP) by NiCl2⋅6H2O nucleating agent

, &
Pages 230-239 | Received 31 Oct 2017, Accepted 22 Jun 2018, Published online: 07 May 2019

References

  • C. R. Bowen, H. A. Kim, P. M. Weaver, and S. Dunn, Piezoelectric and ferroelectric materials and structures for energy harvesting applications, Energy Environ. Sci. 7 (1), 25 (2014). DOI: 10.1039/C3EE42454E.
  • R. A. Steven, and A. S. Henry, A review of power harvesting using piezoelectric materials (2003–2006), Smart Mater. Struct. 16 (3), R1 (2007). DOI: 10.1088/0964-1726/16/3/r01.
  • X. Li, S. Chen, K. Yao, and F. E. H. Tay, Ferroelectric poly(vinylidene fluoride) PVDF films derived from the solutions with retainable water and controlled water loss, J. Polym. Sci. B Polym. Phys. 47 (23), 2410 (2009). DOI: 10.1002/polb.21837.
  • P. Thakur et al., Improvement of electroactive β phase nucleation and dielectric properties of WO3⋅H2O nanoparticle loaded poly(vinylidene fluoride) thin films, RSC Adv. 5 (77), 62819 (2015). DOI: 10.1039/C5RA11407A.
  • L. Wu et al., Improvement of the piezoelectric properties of PVDF-HFP using AgNWs, RSC Adv. 4 (68), 35896 (2014). DOI: 10.1039/C4RA03382E.
  • W. Ong et al., Direct stamping and capillary flow patterning of solution processable piezoelectric polyvinylidene fluoride films, Polymer. 54 (20), 5330 (2013). DOI: 10.1016/j.polymer.2013.07.062.
  • C.-L. Liang et al., Induced formation of polar phases in poly(vinylidene fluoride) by cetyl trimethyl ammonium bromide, J. Mater. Sci. 49 (12), 4171 (2014). DOI: 10.1007/s10853-014-8112-8.
  • M. Li et al., Revisiting the δ-phase of poly(vinylidene fluoride) for solution-processed ferroelectric thin films, Nature Mater. 12 (5), 433 (2013). DOI: 10.1038/nmat3577.
  • J. Buckley et al., Nanocomposites of poly(vinylidene fluoride) with organically modified silicate. Polymer. 47 (7), 2411 (2006). DOI: 10.1016/j.polymer.2006.02.012.
  • V. Sencadas, R. Gregorio, and S. Lanceros-Méndez, α to β Phase transformation and microestructural changes of PVDF films induced by uniaxial stretch, J. Macromol. Sci. Part B. 48 (3), 514 (2009). DOI: 10.1080/00222340902837527.
  • A. Biswas, K. Henkel, D. Schmeißer, and D. Mandal, Comparison of the thermal stability of the α, β and γ phases in poly(vinylidene fluoride) based on in situ thermal Fourier transform infrared spectroscopy. Phase Transitions. 90 (12), 1205 (2017). DOI: 10.1080/01411594.2017.1337902.
  • P. Adhikary, and D. Mandal, Enhanced electro-active phase in a luminescent P(VDF-HFP)/Zn2+ flexible composite film for piezoelectric based energy harvesting applications and self-powered UV light detection, Phys. Chem. Chem. Phys. 19 (27), 17789 (2017). DOI: 10.1039/C7CP01714F.
  • P. Adhikary, S. Garain, and D. Mandal, The co-operative performance of a hydrated salt assisted sponge like P(VDF-HFP) piezoelectric generator: an effective piezoelectric based energy harvester, Phys. Chem. Chem. Phys. 17 (11), 7275 (2015). DOI: 10.1039/C4CP05513F.
  • J. R. Gregorio, and M. Cestari, Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene fluoride), J. Polym. Sci. B Polym. Phys. . 32 (5), 859 (1994). DOI: 10.1002/polb.1994.090320509.
  • A. Salimi, and A. A. Yousefi, Analysis Method: FTIR studies of β-phase crystal formation in stretched PVDF films, Polym. Test. 22 (6), 699 (2003). DOI: 10.1016/S0142-9418(03)00003-5.
  • C.-W. Tang et al., The effects of nanofillers, stretching and recrystallization on microstructure, phase transformation and dielectric properties in PVDF nanocomposites, Eur. Polym. J. 48 (6), 1062 (2012). DOI: 10.1016/j.eurpolymj.2012.04.002.
  • Y. K. A. Low et al., Increasing solvent polarity and addition of salts promote β-phase poly(vinylidene fluoride) formation, J. Appl. Polym. Sci. 128 (5), 2902 (2013). DOI: 10.1002/app.38451.
  • P. Fakhri, H. Mahmood, B. Jaleh, and A. Pegoretti, Improved electroactive phase content and dielectric properties of flexible PVDF nanocomposite films filled with Au- and Cu-doped graphene oxide hybrid nanofiller, Synth. Met. 220, 653 (2016). DOI: 10.1016/j.synthmet.2016.08.008.
  • M. El Achaby et al., Nanocomposite films of poly(vinylidene fluoride) filled with polyvinylpyrrolidone-coated multiwalled carbon nanotubes: Enhancement of β-polymorph formation and tensile properties, Polym. Eng. Sci. 53 (1), 34 (2013). DOI: 10.1002/pen.23236.
  • Y. Zhang, C. Zhu, and J. Kan, Synthesis and characterization of ferromagnetic polyaniline with conductivity in an applied magnetic field, J. Appl. Polym. Sci. 109 (5), 3024 (2008). DOI: 10.1002/app.28414.
  • P. Thakur et al., Enhancement of β phase crystallization and dielectric behavior of kaolinite/halloysite modified poly(vinylidene fluoride) thin films, Appl. Clay Sci. 99, 149 (2014). DOI: 10.1016/j.clay.2014.06.025.
  • Y. K. A. Low et al., β-Phase poly(vinylidene fluoride) films encouraged more homogeneous cell distribution and more significant deposition of fibronectin towards the cell–material interface compared to α-phase poly(vinylidene fluoride) films, Mater. Sci. Eng. C. 34 (Supplement C), 345 (2014). DOI: 10.1016/j.msec.2013.09.029.
  • S. Roy et al., Enhanced electroactive β-phase nucleation and dielectric properties of PVdF-HFP thin films influenced by montmorillonite and Ni(OH)2 nanoparticle modified montmorillonite, RSC Adv. 6 (26), 21881 (2016). DOI: 10.1039/C6RA00864J.
  • Z. M. Dang et al., Effect of shell-layer thickness on dielectric properties in Ag@TiO2 core@shell nanoparticles filled ferroelectric poly(vinylidene fluoride) composites, Phys. Status Solidi A Appl. Mater. 207, 739 (2010). DOI: 10.1002/pssa.200925471.
  • S. Yoon, A. A. Prabu, K. J. Kim, and C. Park, Metal salt-induced ferroelectric crystalline phase in poly(vinylidene fluoride) films. Macromol. Rapid Commun. 29 (15), 1316 (2008). DOI: 10.1002/marc.200800108.
  • S. Jana, S. Garain, S. Sen, and D. Mandal, The influence of hydrogen bonding on the dielectric constant and the piezoelectric energy harvesting performance of hydrated metal salt mediated PVDF films, Phys. Chem. Chem. Phys. 17 (26), 17429 (2015). DOI: 10.1039/C5CP01820J.
  • P. Thakur et al., The role of cerium(iii)/yttrium(iii) nitrate hexahydrate salts on electroactive β phase nucleation and dielectric properties of poly(vinylidene fluoride) thin films, RSC Adv. 5 (36), 28487 (2015). DOI: 10.1039/C5RA03524D.
  • Y. Sui et al., Enhanced dielectric and ferroelectric properties in PVDF composite flexible films through doping with diisopropylammonium bromide, RSC Adv. 6 (9), 7364 (2016). DOI: 10.1039/C5RA25371C.
  • J. Yu et al., Crystal structure transformation and dielectric properties of polymer composites incorporating zinc oxide nanorods, Macromol. Res. 22 (1), 19 (2014). DOI: 10.1007/s13233-014-2009-x.
  • Y. Feng et al., Enhanced dielectric properties of PVDF-HFP/BaTiO3-nanowire composites induced by interfacial polarization and wire-shape, J. Mater. Chem. C. 3 (6), 1250 (2015). DOI: 10.1039/C4TC02183E.
  • R. J. Klein et al., Modeling electrode polarization in dielectric spectroscopy: Ion mobility and mobile ion concentration of single-ion polymer electrolytes, J. Chem. Phys. 124 (14), 144903 (2006). DOI: 10.1063/1.2186638.
  • A. Linares, A. Nogales, D. R. Rueda, and T. A. Ezquerra, Molecular dynamics in PVDF/PVA blends as revealed by dielectric loss spectroscopy, J. Polym. Sci. B Polym. Phys. 45 (13), 1653 (2007). DOI: 10.1002/polb.21210.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.