88
Views
3
CrossRef citations to date
0
Altmetric
Articles

Tunable optical and magneto-optical properties of nickel-polymer nanoparticles

&
Pages 1-10 | Received 31 Oct 2017, Accepted 22 Jun 2018, Published online: 07 May 2019

References

  • D. A. Smith et al., Magneto-optical spectra of closely spaced magnetite nanoparticles, J. Appl. Phys. 97 (10), 10M504 (2005). DOI: 10.1063/1.1847352.
  • P. Chaiyachate, and T. Dasri, Optical absorption and scattering properties of the active layer of perovskite solar cells incorporated silver nanoparticles, Orient. J. Chem. 33 (2), 807 (2017). DOI: 10.13005/ojc/330228.
  • T. Dasri, and S. Sompech, Simulation of absorption spectra of metal nanoparticles embedded in organic media, Integr. Ferroelectr. 165 (1), 176 (2015). DOI: 10.1080/10584587.2015.1063942.
  • O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, and A. M. Dmytruk, Optical properties of sol–gel fabricated Ni/SiO2 glass nanocomposites, J. Phys. Chem. Solids. 69 (7), 1615 (2008). DOI: 10.1016/j.jpcs.2007.12.002.
  • J. Lim et al., Synthesis and single-particle optical detection of low-polydispersity plasmonic-superparamagnetic nanoparticles, Adv. Mater. 20 (9), 1721 (2008). DOI: 10.1002/adma.200702196.
  • Z. Xiong et al., Dielectric enhancement of BaTiO3/SrTiO3 superlattices with embedded Ni nanocrystals, J. Alloys Compd. 513, 300 (2012). DOI: 10.1016/j.jallcom.2011.09.103.
  • W. Jiang et al., Superparamagnetic Ag@Fe3O4 core–shell nanospheres: fabrication, characterization and application as reusable nanocatalysts, Dalton Trans. 41(15), 4594 (2012). DOI: 10.1039/c2dt12307j.
  • N. Kalfagiannis et al., Plasmonic silver nanoparticles for improved organic solar cells, Sol. Energy Mater. Sol. cells. 104, 165 (2012). DOI: 10.1016/j.solmat.2012.05.018.
  • X. Chen et al., Insight into the efficiency enhancement of polymer solar cells by incorporating gold nanoparticles, Sol. Energy Mater. Sol. cells. 111, 1 (2013). DOI: 10.1016/j.solmat.2012.12.016.
  • E. Stratakis, and E. Kymakis, Nanoparticle-based plasmonic organic photovoltaic devices, Mater. Today. 16 (4), 133 (2013). DOI: 10.1016/j.mattod.2013.04.006.
  • M. Notarianni et al., Plasmonic effect of gold nanoparticles in organic solar cells, Sol. Energy. 106, 23 (2014). DOI: 10.1016/j.solener.2013.09.026.
  • D. Yang et al., Precisely size-tunable magnetic/plasmonic core/shell nanoparticles with controlled optical properties, Angew. Chem. 127(41), 12259 (2015). DOI: 10.1002/ange.201504676.
  • H. Amekura, Y. Takeda, and N. Kishimoto, Non-magnetic to magnetic and non-metal to metal transitions in nickel nanoparticles in SiO2 under heat treatment, Nucl. Instr. Meth. Phys. Res. B. 219–220, 825 (2004). DOI: 10.1016/j.nimb.2004.01.171.
  • H. Amekura, Y. Takeda, and N. Kishimoto, Criteria for surface plasmon resonance energy of metal nanoparticles in silica glass, Nucl. Instr. Meth. Phys. Res. B. 222 (1–2), 96 (2004).
  • C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, Chemistry and properties of nanocrystals of different shapes, Chem. Rev. 105 (4), 1025 (2005).
  • X. He, W. Zhong, C.-T. Au, and Y. Du, Size dependence of the magnetic properties of Ni nanoparticles prepared by thermal decomposition method, Nanoscale Res. Lett. 8 (1), 446 (2013). DOI: 10.1186/1556-276X-8-446.
  • T. Dasri, Theoretical calculation of plasmonic enhancement of silver nanosphere, nanocube, and nanorod embedded in organic solar cells, Integr. Ferroelectr. 175 (1), 176 (2016). DOI: 10.1080/10584587.2016.1204201.
  • P. Chaiyachate, A. Chingsungnoen, and T. Dasri, Theoretical calculation of the optical properties of dielectric material @ noble metal core-shell composite nanoparticles, Indian J. Sci. Technol. 10 (13), 1 (2017). DOI: 10.17485/ijst/2017/v10i13/89908.
  • X. Xiang et al., Optical properties and structure characterization of sapphire after Ni ion implantation and annealing, J. Appl. Phys. 98 (7), 073524 (2005). DOI: 10.1063/1.2084314.
  • D. Li, and S. Komarneni, Microwave‐assisted polyol process for synthesis of Ni nanoparticles, J. Am. Ceram. Soc. 89 (5), 1510 (2006). DOI: 10.1111/j.1551-2916.2006.00925.x.
  • Y. Ruan, C. Wang, and J. Jiang, Nanostructured Ni compounds as electrode materials towards high-performance electrochemical capacitors. J. Mater. Chem. A. 4 (38), 14509 (2016). DOI: 10.1039/C6TA05104A.
  • N. A. M. Zaid, and N. H. Idris, Enhanced capacitance of hybrid layered graphene/nickel nanocomposite for supercapacitors, Sci. Rep. 6, 32082 (2016).
  • R. Bussamara et al., Sputtering deposition of magnetic Ni nanoparticles directly onto an enzyme surface: a novel method to obtain a magnetic biocatalyst, Chem. Commun. 49(13), 1273 (2013). DOI: 10.1039/c2cc38737a.
  • E. Verrelli et al., Nickel nanoparticle deposition at room temperature for memory applications, Microelectron. Eng. 84 (9–10), 1994 (2007). DOI: 10.1016/j.mee.2007.04.078.
  • S. Sudhasree, A. Shakila Banu, P. Brindha, and G. A. Kurian, Synthesis of nickel nanoparticles by chemical and green route and their comparison in respect to biological effect and toxicity, Toxicol. Environ. Chem. 96 (5), 743 (2014). DOI: 10.1080/02772248.2014.923148.
  • P. Kalita et al., Ring like self-assembled Ni nanoparticles based biosensor for food toxin detection, Appl. Phys. Lett. 100 (9), 093702 (2012). DOI: 10.1063/1.3690044.
  • C. J. Pandian, R. Palanivel, and S. Dhananasekaran, Green synthesis of nickel nanoparticles using Ocimum sanctum and their application in dye and pollutant adsorption, Chin. J. Nucl. Phys. 23, 1307 (2015). DOI: 10.1016/j.cjche.2015.05.012.
  • E. M. Purcell, and C. R. Pennypacker, Scattering and absorption of light by nonspherical dielectric grains, ApJ. 186, 705 (1973). DOI: 10.1086/152538.
  • V. Doormann, J. P. Krumme, and H. Lenz, Optical and magneto‐optical tensor spectra of bismuth‐substituted yttrium‐iron‐garnet films, J. Appl. Phys. 68 (7), 3544 (1990). DOI: 10.1063/1.346314.
  • G. S. Krinchik, and V. A. Artemjev, Magneto‐optic properties of nickel, iron, and cobalt, J. Appl. Phys. 39 (2), 1276 (1968). DOI: 10.1063/1.1656263.
  • M. Kataja et al., Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays, Nat. Commun. 6, 1 (2015).
  • P. K. Jain, and M. A. El-Sayed, Noble metal nanoparticle pairs: effect of medium for enhanced nanosensing, Nano Lett. 8 (12), 4347 (2008).
  • E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, A hybridization model for the plasmon response of complex nanostructures, Science. 302 (5644), 419 (2003). DOI: 10.1126/science.1089171.
  • W. Rechberger et al., Optical properties of two interacting gold nanoparticles, Opt. Commun. 220 (1–3), 137 (2003). DOI: 10.1016/S0030-4018(03)01357-9.
  • T. Kaihara, Study of performance improvement of magneto-optical surface plasmon polaritons with Fe. In Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy. Tokyo University, Koganei Tokyo (2017).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.