77
Views
0
CrossRef citations to date
0
Altmetric
Articles

Novel SnO2@open microcell-liked graphene network as efficient detection for NO2

, , &
Pages 111-120 | Received 27 Sep 2018, Accepted 05 Feb 2019, Published online: 19 Jul 2019

References

  • T. S. Wang et al., Self-assembly template driven 3D inverse opal microspheres functionalized with catalyst nanoparticles enabling a highly efficient chemical sensing platform. ACS Appl. Mater. Interfaces. 10(6), 5835 (2018). DOI: 10.1021/acsami.7b19641.
  • H. J. Wang et al., One-step synthesis of hierarchical a-Ni(OH)2 flowerlike architectures and their gas sensing properties for NOx at room temperature. CrystEngComm. 14(20), 6843 (2012). DOI: 10.1039/c2ce25553g.
  • Y. B. Shen et al., Low-temperature and highly enhanced NO2 sensing performance of Au-functionalized WO3 microspheres with a hierarchical nanostructure. Appl. Surf. Sci. 434(15), 922 (2018). DOI: 10.1016/j.apsusc.2017.11.046.
  • L. P. Gao et al., Porous corundum-type In2O3 nanosheets: synthesis and NO2 sensing properties. Sens. Actuators B. 208, 436 (2015). DOI: 10.1016/j.snb.2014.11.053.
  • A. Maity, and S. B. Majumder, NO2 sensing and selectivity characteristics of tungsten oxide thin films. Sens. Actuators B. 206, 423 (2015). DOI: 10.1016/j.snb.2014.09.082.
  • Z. Y. Zhang et al., Ultrasensitive ppb-level NO2 gas sensor based on WO3 hollow nanosphere doped with Fe. Appl. Surf. Sci. 434(15), 891 (2018). DOI: 10.1016/j.apsusc.2017.10.074.
  • F. Schedin et al., Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652 (2007). DOI: 10.1038/nmat1967.
  • P. A. Russo et al., Room temperature hydrogen sensing with heteronanostructures based on reduced graphene oxide and tin oxide. Angew. Chem. Int. Ed. 51(44), 11053 (2012). DOI: 10.1002/anie.201204373.
  • L. S. Zhang et al., Characterization of partially reduced graphene oxide as room temperature sensor for H2. Nanoscale. 3(6), 2458 (2011). DOI: 10.1039/c1nr10187k.
  • S. Basu, and P. Bhattacharyya, Recent developments on graphene and graphene oxide based solid state gas sensors. Sens. Actuators B. 173, 1 (2012). DOI: 10.1016/j.snb.2012.07.092.
  • M. G. Chung et al., Highly sensitive NO2 gas sensor based on ozone treated graphene. Sens. Actuators B. 166–167(20), 172 (2012). DOI: 10.1016/j.snb.2012.02.036.
  • M. G. Chung et al., Flexible hydrogen sensors using graphene with palladium nanoparticle decoration. Sens. Actuators B. 169(5), 387 (2012). DOI: 10.1016/j.snb.2012.05.031.
  • G. Lu, L. E. Ocola, and J. Chen, Reduced graphene oxide for room-temperature gas sensors. Nanotechnology. 20(44), 445502 (2009). DOI: 10.1088/0957-4484/20/44/445502.
  • G. Lu, L. E. Ocola, and J. Chen, Gas detection using low-temperature reduced graphene oxide sheets. Appl. Phys. Lett. 94(8), 083111 (2009). DOI: 10.1063/1.3086896.
  • G. Lu et al., Toward practical gas sensing with highly reduced graphene oxide: a new signal processing method to circumvent run-to-run and device-to-device variations. ACS Nano. 5(2), 1154 (2011). DOI: 10.1021/nn102803q.
  • J. D. Fowler et al., Practical chemical sensors from chemically derived graphene. ACS Nano. 3(2), 301 (2009). DOI: 10.1021/nn800593m.
  • V. Dua et al., All‐organic vapor sensor using inkjet‐printed reduced graphene oxide. Angew. Chem. 122(12), 2200 (2010). DOI: 10.1002/ange.200905089.
  • T. H. Han et al., Steam etched porous graphene oxide network for chemical sensing. J. Am. Chem. Soc. 133(39), 15264 (2011). DOI: 10.1021/ja205693t.
  • X. An et al., WO 3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing. J. Mater. Chem. 22(17), 8525 (2012). DOI: 10.1039/c2jm16709c.
  • S. Srivastava et al., Faster response of NO2 sensing in graphene–WO3 nanocomposites. Nanotechnology. 23(20), 205501 (2012). DOI: 10.1088/0957-4484/23/20/205501.
  • J. Guo et al., Synthesis of hollow tubular reduced graphene oxide/SnO2 composites and their gas sensing properties. Mater. Lett. 209(15), 102 (2017). DOI: 10.1016/j.matlet.2017.07.118.
  • G. Neri et al., Sensing behavior of SnO2/reduced graphene oxide nanocomposites toward NO2, Sens. Actuators B. 179(31), 61 (2013). DOI: 10.1016/j.snb.2012.10.031.
  • X. Liu, J. S. Cui, J. B. Sun, and X. T. Zhang, 3D graphene aerogel-supported SnO2 nanoparticles for efficient detection of NO2. RSC Adv. 4(43), 22601 (2014). DOI: 10.1039/c4ra02453b.
  • P. Song et al., Hydrothermal synthesis of porous In2O3 nanospheres with superior ethanol sensing properties. Sens. Actuators. B. 196, 434 (2014). DOI: 10.1016/j.snb.2014.01.114.
  • W. S. Hummers, and R. E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339 (1958). DOI: 10.1021/ja01539a017.
  • J. Zhang et al., Reduction of graphene oxide via L-ascorbic acid. Chem. Commun. (Camb.) 46(7), 1112 (2010). DOI: 10.1039/b917705a.
  • J. W. Yoon et al., Trimodally porous SnO2 nanospheres with three-dimensional interconnectivity and size tunability: a one-pot synthetic route and potential application as an extremely sensitive ethanol detector. NPG Asia Mater. 8(3), e244 (2016). DOI: 10.1038/am.2016.16.
  • T. Hyodo et al., Microstructural control of porous In2O3 powders prepared by ultrasonic-spray pyrolysis employing self-synthesized polymethylmethacrylate microspheres as a template and their NO2-sensing properties. Sens. Actuators, B. 244, 992 (2017). DOI: 10.1016/j.snb.2017.01.091.
  • S. J. Choi et al., Coaxial electrospinning of WO3 nanotubes functionalized with bio-inspired Pd catalysts and their superior hydrogen sensing performance. Nanoscale. 8(17), 9159 (2016). DOI: 10.1039/C5NR06611E.
  • H. Zhang et al., SnO2 nanoparticles-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature. Sensors and Actuators B. 190, 472 (2014). DOI: 10.1016/j.snb.2013.08.067.
  • Q. Lin, Y. Li, and M. Yang, Tin oxide/graphene composite fabricated via a hydrothermal method for gas sensors working at room temperature. Sens. Actuators B. 173, 139 (2012). DOI: 10.1016/j.snb.2012.06.055.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.