Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 201, 2019 - Issue 1
36
Views
0
CrossRef citations to date
0
Altmetric
S. Priya L. Et Al.

Influence of Zr/Sn ratio on the Transverse Piezoelectric Coefficient |e31,f| in Lanthanum-Doped Lead Zirconate Titanate Stannate Thin Films

, &
Pages 86-93 | Received 13 Aug 2018, Accepted 13 Jun 2019, Published online: 10 Dec 2019

References

  • K. Kanda, et al., Simple fabrication of metal-based piezoelectric MEMS by direct deposition of Pb(Zr,Ti)O3 thin films on titanium substrates. J. Microelectromech. Syst. 18 (3), 610 (2009). DOI: 10.1109/JMEMS.2009.2015478.
  • S. K. Pandey et al., Effect of double doping in lead zirconate titanate (PZT) lattices by sol-gel technique for MEMS applications. Integr. Ferroelectr. 121, 65 (2010).
  • R. A. Wolf and T. S. McKinstry, Temperature dependence of the piezoelectric response in lead zirconate titanate films. J. Appl. Phys. 95 (3), 1397 (2004). DOI: 10.1063/1.1636530.
  • J. P. George et al., Preferentially oriented BaTiO3 thin films deposited on silicon with thin intermediate buffer layers. Nanoscale Res. Lett. 8 (1), 62 (2013).
  • N. Izyumskaya et al., Processing, structure, properties and applications of PZT Thin films. Crit. Rev. Solid State Mater. Sci. 32 (3-4), 111 (2007). DOI: 10.1080/10408430701707347.
  • D. Berlincourt, et al., Release of electric energy in PbNb(Zr,Ti,Sn)O3 by temperature and by pressure-enforced phase transitions. Appl. Phys. Lett. 3 (5), 90 (1963). DOI: 10.1063/1.1753882.
  • L. E. Cross, Antiferroelectric–ferroelectric switching in simple ‘Kittle’ antiferroelectrics. J. Phys. Soc. Jpn. 23 (1), 77 (1967). DOI: 10.1143/JPSJ.23.77.
  • B. Jaffe, W. R. Cooke, Jr, and H. Jaffe, Piezoelectric ceramics; monographs on non-metallic solids, edited by J. P. Roberts and P. Popper (Academic Press, London, 1971), pp. 135–181.
  • D. Berlincourt, H. H. Krueger, and B. Jaffe, Stability of phase in modified Lead Zirconate with variation in pressure, electric field. Temperature and composition. Phys. Chem. Solids. 25 (7), 659 (1964). DOI: 10.1016/0022-3697(64)90175-1.
  • K. Uchino and S. Nomura, Shape memory effect associated with the forced phase transition in antiferroelectrics. Ferroelectrics. 50, 517 (1983).
  • S. S. N. Bharadwaja and S. B. Krupanidhi, Growth and study of antiferroelectric lead zirconate thin films by pulsed laser ablation. J. Appl. Phys. 86 (10), 5862 (1999). DOI: 10.1063/1.371604.
  • D. Berlincourt, Transducers using forced transitions between ferroelectric and antiferroelectric state. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. SU-13, 116 (1966). DOI: 10.1109/T-SU.1966.29394.
  • K. Uchino, Digital displacement transducer using antiferroelectrics. Jpn. J. Appl. Phys. 24 (S2), 460 (1985). DOI: 10.7567/JJAPS.24S2.460.
  • W. Y. Pan, C. Q. Dam, Q. M. Zhang, and L. E. Cross, Large displacement transducers based on electric field forced phase transition in the tetragonal (Pb0.97La0.02)(Ti,Zr,Sn)O3 family of ceramics. J. Appl. Phys. 66 (12), 6014 (1989). DOI: 10.1063/1.343578.
  • Y. Li et al., Domain dielectric and optical studies in antiferroelectric (Pb,La)(Zr,Sn,Ti)O3 single crystals. Solid State Commun. 152 (18), 1791 (2012)., DOI: 10.1016/j.ssc.2012.07.004.
  • B. Xu, Y. Ye, and L. E. Cross, Dielectric properties and field-induced phase switching of lead zirconate titanate stannate antiferroelectric thick films on silicon substrates. J. Appl. Phys. 87 (5), 2507 (2000). DOI: 10.1063/1.372211.
  • C. J. Gaskey, et al., Antiferroelectric to ferroelectric phase switching thin films in the lead zirconate stannate titanate solid solution system, in Proceedings of the 9th IEEE International Symposium, Application of Ferroelectrics. 416-418 (1994).
  • D. Berlincourt, Transducers using the electric field-forced antiferroelectric-ferroelectric transition. Ultrasonics. 6(1), 48 (1968). DOI: 10.1016/0041-624X(68)90020-6.
  • D. Berlincourt, H. H. A. Krueger, and B. Jaffe, Stability of phases in modified lead zirconate with variation in pressure, electric field, temperature and composition. J. Phys. Chem. Solids. 25 (7), 659 (1964). DOI: 10.1016/0022-3697(64)90175-1.
  • K. Y. Yamakawa, et al., Reactive magnetron co‐sputtered antiferroelectric lead zirconate thin films. Appl. Phys. Lett. 67 (14), 2014 (1995). DOI: 10.1063/1.114771.
  • B. Xu, et al., Charge release of lanthanum-doped lead zirconate titanate stannate antiferroelectric thin films. Appl. Phys. Lett. 72 (5), 593 (1998). DOI: 10.1063/1.120817.
  • J. H. Jang, and K. H. Yoon, Electric fatigue in antiferroelectric and ferroelectric Pb(Zr,Sn,Ti)NbO3 thin films prepared by sol-gel process. Jpn. J. Appl. Phys. 37 (Part 1, No. 9B), 5162 (1998). DOI: 10.1143/JJAP.37.5162.
  • K. A. Markowski, et al., Effect of compositional variations in the lead lanthanum zirconate stannate titanate system on electrical properties. J. Am. Ceram. Soc. 79 (12), 3297 (1996). DOI: 10.1111/j.1151-2916.1996.tb08108.x.
  • M. J. Pan et al., Electric field induced phase transition in Lead lanthanum stannate zirconate titanate (PLSnZT) antiferroelectrics: tailoring properties through compositional modification. Ferroelectrics. 215 (1), 153 (1998). DOI: 10.1080/00150199808229559.
  • Y. Feng, Z. Xu, H. Li, and X. Yao, Effects of La modifier on the electric hysteresis of lead zirconate stannate titanate compounds. Ceram. Int. 30(7), 1393 (2004). DOI: 10.1016/j.ceramint.2003.12.089.
  • W. Pan, et al., Field‐forced antiferroelectric‐to‐ferroelectric switching in modified lead zirconate titanate stannate ceramics. J. Am. Ceram. Soc. 72(4), 571 (1989). DOI: 10.1111/j.1151-2916.1989.tb06177.x.
  • D. Berlincourt, Transducers using forced transitions between ferroelectric and antiferroelectric states, presented at IEEE, 1965 Ultrasonics symposium (1965).
  • D. Ambika, et al., Tunability of third order nonlinear absorption in (Pb,La)(Zr,Ti)O3 thin films. Appl. Phys. Lett. 98 (1), 011903 (2011). DOI: 10.1063/1.3534786.
  • I. Kanno, H. Kotera, and K. Wasa, Measurement of transverse piezoelectric properties of thin films. Sens. Actuators A. 107 (1), 68 (2003). DOI: 10.1016/S0924-4247(03)00234-6.
  • K. Sivanandan, et al., Fabrication and transverse piezoelectric characteristics of PZT thick-film actuators on alumina substrates. Sens. Actuators A. Phys. 148 (1), 134 (2008). DOI: 10.1016/j.sna.2008.06.031.
  • S. Laxmi Priya, et al., Transverse piezoelectric properties of {100}-oriented PLZT[x/65/35] thin films. Mater. Chem. Phys. 151, 308 (2015). DOI: 10.1016/j.matchemphys.2014.11.071.
  • J. G. Smits and W. Choi, The constituent equations of piezoelectric heterogenous bimorphs. IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 38, 256 (1991). DOI: 10.1109/58.79611.
  • D. Ambika, et al., Sol-gel deposition and piezoelectric properties of {110}-oriented PZT thin films. Appl. Phys. Lett. 96 (3), 031909 (2010). DOI: 10.1063/1.3293446.
  • S. L. Priya, et al., Improved transverse piezoelectric properties in {110}-oriented B-site acceptor doped PLZT (8/65/35) thin films. Integr. Ferroelectr. 176(1), 210 (2016). DOI: 10.1080/10584587.2016.1252648.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.