Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 201, 2019 - Issue 1
69
Views
0
CrossRef citations to date
0
Altmetric
Articles

Temperature Dependence on Ferroelectric, Energy Storage Density, and Electric Field-Induced Strain Response of Lead-Free Bi0.485(Na0.388K0.097)Ba0.021Sr0.009TiO3 Ceramics

, &
Pages 142-154 | Received 01 Apr 2019, Accepted 06 Sep 2019, Published online: 10 Dec 2019

References

  • Q. Li et al., Giant field-induced strain in Nb2O5-modified (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics. Ceram. Int. 43 (7), 5367 (2017). DOI: 10.1016/j.ceramint.2017.01.084.
  • C. Wang, T. Xia, and X. Lou, Large strain response in Li/Nb co-doped Bi0.5(Na0.8K0.2)0.5TiO3 lead-free piezoceramics. Ceram. Int. 44 (7), 7378 (2018). DOI: 10.1016/j.ceramint.2017.12.113.
  • Y. Pu et al., Phase transition behavior, dielectric and ferroelectric properties of (1-x)(Bi0.5Na0.5)TiO3-xBa0.85Ca0.15Ti0.9Zr0.1O3 ceramics. J. Eur. Ceram. Soc. 36 (10), 2461 (2016). DOI: 10.1016/j.jeurceramsoc.2016.03.005.
  • N. Zhao et al., A novel ((Bi0.5Na0.5)0.94Ba0.06)1-x(K0.5Nd0.5)xTiO3 lead-free relaxor ferroelectric ceramic with large electrostrains at wide temperature ranges. Ceram. Int. 44 (1), 571 (2018). DOI: 10.1016/j.ceramint.2017.09.215.
  • F. Li et al., Phase-composition-dependent piezoelectric and electromechanical strain properties in (Bi1/2Na1/2)TiO3-Ba(Ni1/2Nb1/2)O3 lead-free ceramics. J. Am. Ceram. Soc. 98 (3), 811 (2015). DOI: 10.1111/jace.13363.
  • P. Fan et al., Large electric-field-induced strain in B-site complex-ion (Fe0.5Nb0.5)4+-doped Bi1/2(Na0.82K0.12)1/2TiO3 lead-free piezoceramics. Ceram. Int. 44 (3), 3211 (2018). DOI: 10.1016/j.ceramint.2017.11.092.
  • A. Sasaki et al., Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 systems. Jpn. J. Appl. Phys. 38 (Part 1, No. 9B), 5564 (1999). DOI: 10.1143/JJAP.38.5564.
  • Y. Hiruma et al., Phase transition temperature and electrical properties of (Bi1/2Na1/2)TiO3-(Bi1/2A1/2)TiO3 (A = Li and K) lead-free ferroelectric ceramics. J. Appl. Phys. 103 (8), 084121 (2008). DOI: 10.1063/1.2903498.
  • M. Otonicar et al., Compositional range and electrical properties of the morphotropic phase boundary in the Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3 system. J. Eur. Ceram. Soc. 30, 971 (2010).
  • L. H. Bac et al., Effect of sintering temperature on properties of lead-free piezoelectric 0.975Bi0.5(Na0.82K0.18)0.5TiO3-0.025LiTaO3 ceramics. J. Nanosci. Nanotechnol. 16 (8), 7929 (2016). DOI: 10.1166/jnn.2016.12764.
  • A. Ullah et al., The effects of sintering temperatures on dielectric, ferroelectric and electric field-induced strain of lead-free Bi0.5(Na0.78K0.22)0.5TiO3 piezoelectric ceramics synthesized by the sol-gel technique. Curr. Appl. Phys. 10 (6), 1367 (2010). DOI: 10.1016/j.cap.2010.05.004.
  • J. Xu et al., Dielectric properties of Y-doped Ba1-xSrxTiO3 ceramics. Opt. Appl. 1, 255 (2010).
  • P. S. Dobal et al., Phase transitions in Ba1-xSrxTiO3 ceramics. Ferroelectrics Lett. 29 (3–4), 1 (2002). DOI: 10.1080/07315170214359.
  • Y. Yu, X. Wang, and X. Yao, Dielectric properties of Ba1-xSrxTiO3 ceramics prepared by microwave sintering. Ceram. Int. 39, S335 (2013). DOI: 10.1016/j.ceramint.2012.10.089.
  • A. Ullah et al., Electromechanical and microstructural study of (1-x)Bi0.5(Na0.40K0.10)TiO3-x(Ba0.70Sr0.30)TiO3 lead-free piezoelectric ceramics. J. Electroceram. 33 (3–4), 187 (2014). DOI: 10.1007/s10832-014-9945-x.
  • D. D. Dung, N. V. Quyet, and L. H. Bac, Role of sintering temperature on giant field-induced strain in lead-free Bi0.5(Na,K)0.5TiO3-based ceramics. Ferroelectrics. 474 (1), 113 (2015). DOI: 10.1080/00150193.2015.996458.
  • A. Hussain et al., The effect of sintering temperature on lead-free Bi0.5(Na0.78K0.22)0.5TiO3-(Na0.5K0.5)NbO3 ceramics. Ferroelectrics. 404 (1), 157 (2010). DOI: 10.1080/00150193.2010.482488.
  • T. Huang et al., Sintering behavior of KNN-BNKT lead-free piezoelectric ceramics. Ferroelectrics. 458 (1), 37 (2014). DOI: 10.1080/00150193.2013.849978.
  • Y. J. Lee et al., Effect of sintering temperature on the piezoelectric properties in BiFeO3-BaTiO3 ceramics. J. Korean Ceram. Soc. 61, 947 (2012). DOI: 10.3938/jkps.61.947.
  • D. B. Marshall, T. Noma, and A. G. Evans, A simple method for determining elasticmodulus to hardness ratios using Knoop indentation measurements. J. Am. Ceram. Soc. 65 (10), C175 (1982). DOI: 10.1111/j.1151-2916.1982.tb10357.x.
  • N. Meredith, M. Sherriff, D. J. Setchell, S. A. V. Swanson, Measurement of the microhardness and young's modulus of human enamel and dentine using an indentation technique. Archs oral Biol. 41, 539 (1996). DOI:10.1016/0003-9969(96)00020-9
  • V. D. N. Tran et al., Lead-free Bi1/2(Na0.82K0.18)1/2TiO3 relaxor ferroelectrics with temperature insensitive electrostrictive coefficient. Ceram. Int. 39, S119 (2013). DOI: 10.1016/j.ceramint.2012.10.046.
  • V. D. N. Tran et al., Lead-free electrostrictive bismuth perovskite ceramics with thermally stable field-induced strains. Mater. Lett. 65 (17–18), 2607 (2011). DOI: 10.1016/j.matlet.2011.05.059.
  • P. Jarupoom et al., Effects of annealing time on ferroelectric and piezoelectric properties of B2O3 doped Ba(Zr0.07Ti0.93)O3 ceramics. Ferroelectrics. 415 (1), 88 (2011). DOI: 10.1080/00150193.2011.577376.
  • R. A. Malik et al., Structure-property relationship in lead-free A- and B-site co-doped Bi0.5(Na0.84K0.16)0.5TiO3-SrTiO3 incipient piezoceramics. RSC Adv. 5 (117), 96953 (2015). DOI: 10.1039/C5RA19107F.
  • J. G. Hao et al., Large strain response in 0.99(Bi0.5Na0.4K0.1)TiO3-0.01(KxNa1-x)NbO3 lead-free ceramics induced by the change of K/Na ratio in (KxNa1-x)NbO3. J. Am. Ceram. Soc. 96, 3133 (2013). DOI: 10.1111/jace.12462.
  • S. K. Ghosh et al., Phase transition and energy storage properties of BaTiO3-modified Bi0.5(Na0.8K0.2)0.5TiO3 ceramics. Ferroelectrics. 517 (1), 97 (2017). DOI: 10.1080/00150193.2017.1370266.
  • N. Zhao et al., Large strain of temperature insensitive in (1-x)(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-xSr0.7La0.2TiO3 lead-free ceramics. Ceram. Int. 44 (10), 11331 (2018). DOI: 10.1016/j.ceramint.2018.03.182.
  • C. W. D, Materials Science and Engineering: An Introduction (Wiley, New York, NY, 2003).
  • G. B. Ghorbal et al., Comparison of conventional Knoop and Vickers hardness of ceramic materials. J. Eur. Ceram. Soc. 37, 2531 (2017). DOI: 10.1016/j.jeurceramsoc.2017.02.014.
  • N. B. Domingues et al., Comparison of the indentation strength and single-edge-v-notched beam methods for dental ceramic fracture toughness testing. Braz. J. Oral. Sci. 15, 109 (2016). DOI:10.20396/bjos.v15i2.8648760
  • R. A. Malik et al., Giant strain, thermally-stable high energy storage properties and structural evolution of Bi-based lead-free piezoceramics. J. Alloys Compd. 682, 302 (2016). DOI: 10.1016/j.jallcom.2016.04.297.
  • L. Zhang, X. Hao, and L. Zhang, Enhanced energy-storage performances of Bi2O3-Li2O added (1-x)(Na0.5Bi0.5) TiO3-xBaTiO3 thick films. Ceram. Int. 40 (6), 8847 (2014). DOI: 10.1016/j.ceramint.2014.01.107.
  • Q. Li et al., Enhanced energy-storage properties of BaZrO3-modified 0.80Bi0.5Na0.5TiO3-0.20Bi0.5K0.5TiO3 lead-free ferroelectric ceramics. J. Mater. Sci. 51 (2), 1153 (2016). DOI: 10.1007/s10853-015-9446-6.
  • Y. Zhao et al., High energy storage property and breakdown strength of Bi0.5(Na0.82K0.18)0.5TiO3 ceramics modified by (Al0.5Nb0.5)4+ complexion. J. Alloys Compd. 666, 209 (2016). DOI: 10.1016/j.jallcom.2016.01.103.
  • S. T. Zhang et al., Phase diagram and electrostrictive properties of Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 ceramics. Appl. Phys. Lett. 97 (12), 122901 (2010). DOI: 10.1063/1.3491839.
  • X. Liu et al., Enhanced electrostrictive effects in nonstoichiometric 0.99Bi0.505(Na0.8K0.2)0.5-xTiO3-0.01SrTiO3 lead-free ceramics. Mater. Res. Bull. 97, 215 (2018). DOI: 10.1016/j.materresbull.2017.09.009.
  • R. A. Malik et al., Thermal-stability of electric field-induced strain and energy storage density in Nb-doped BNKT-ST piezoceramics. J. Euro. Ceram. Soc. 38 (6), 2511 (2018). DOI: 10.1016/j.jeurceramsoc.2018.01.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.