808
Views
0
CrossRef citations to date
0
Altmetric
Section B: Dielectric Properties

Dielectric Properties of Graphene Oxide Synthesized by Modified Hummers’ Method from Graphite Powder

, &
Pages 41-51 | Received 01 Oct 2018, Accepted 12 Aug 2019, Published online: 30 Dec 2019

References

  • Y. Wu et al., Graphene/boron nitride–polyurethane micro laminates for exceptional dielectric properties and high energy densities, ACS Appl. Mater. Interfaces 10 (31), 26641 (2018). DOI: 10.1021/acsami.8b08031.
  • X. Hao, A review on the dielectric materials for high energy-storage application, J. Adv. Dielect. 03 (01), 1330001 (2013). DOI: 10.1142/S2010135X13300016.
  • K. S. Novoselov et al., A roadmap for grapheme, Nature 490 (7419), 192 (2012). DOI: 10.1038/nature11458.
  • C. Berger et al., Electronic confinement and coherence in patterned epitaxial graphene, Science 312 (5777), 1191 (2006). DOI: 10.1126/science.1125925.
  • T. H. Han et al., Peptide/graphene hybrid assembly into core/shell nanowires, Adv. Mater. 22 (18), 2060 (2010). DOI: 10.1002/adma.200903221.
  • Y. Gao, and P. Hao, Mechanical properties of monolayer graphene, Phys. E Low Dimens. Syst. Nanostruct. 41 (8), 1561 (2009). DOI: 10.1016/j.physe.2009.04.033.
  • J. B. Oostinga et al., Gate-induced insulating state in bilayer graphene device, Nature Mater. 7 (2), 151 (2008). DOI: 10.1038/nmat2082.
  • J. D. Fowler et al., Practical chemical sensors from chemically derived graphene, ACS Nano. 3 (2), 301 (2009). DOI: 10.1021/nn800593m.
  • Y.-H. Lu et al., Metal-embedded graphene: A possible catalyst with high activity, J. Phys. Chem. C. 113 (47), 20156 (2009). DOI: 10.1021/jp908829m.
  • Z. Liu et al., Organic photovoltaic devices based on a novel acceptor material: Graphene, Adv. Mater. 20 (20), 3924 (2008). DOI: 10.1002/adma.200800366.
  • N. O. Weiss et al., Graphene: An emerging electronic material, Adv. Mater. 24 (43), 5782 (2012)., DOI: 10.1002/adma.201201482.
  • C. Huang, C. Li, and G. Shi, Graphene based catalysts, Energy Environ. Sci. 5 (10), 8848 (2012). DOI: 10.1039/c2ee22238h.
  • Y. Liu, X. Dong, and P. Chen, Biological and chemical sensors based on graphene materials, Chem. Soc. Rev. 41 (6), 2283 (2012). DOI: 10.1039/C1CS15270J.
  • Y. Sun, Q. Wu, and G. Shi, Graphene based new energy materials, Energy Environ. Sci. 4 (4), 1113 (2011). DOI: 10.1039/c0ee00683a.
  • J. K. Wassei, and R. B. Kaner, Oh, the places you’ll go with graphene, Acc. Chem. Res. 46 (10), 2244 (2013). DOI: 10.1021/ar300184v.
  • C. C. Homes, and T. Vogt, Colossal permittivity materials: Doping for superior dielectrics, Nature Mater. 12 (9), 782 (2013). DOI: 10.1038/nmat3744.
  • L. He et al., First-principles study of the structure and lattice dielectric response of CaCu3Ti4O12, Phys. Rev. B 65, 214112 (2002). DOI: 10.1103/PhysRevB.65.214112.
  • T. Ramanathan et al., Functionalized graphene sheets for polymer nanocomposites, Nature Nanotech. 3 (6), 327 (2008). DOI: 10.1038/nnano.2008.96.
  • S. Stankovich et al., Graphene-based composite materials, Nature 442 (7100), 282 (2006). DOI: 10.1038/nature04969.
  • L. J. Romasanta et al., Functionalised graphene sheets as effective high dielectric constant fillers, Nanoscale Res. Lett. 6 (1), 508 (2011)., DOI: 10.1186/1556-276X-6-508.
  • K. S. Novoselov et al., Electric field effect in atomically thin carbon films, Science 306 (5696), 666 (2004). DOI: 10.1126/science.1102896.
  • J. Zhao et al., Efficient preparation of large-area graphene oxide sheets for transparent conductive films, ACS Nano 4 (9), 5245 (2010). DOI: 10.1021/nn1015506.
  • Y. Xu et al., Highly conductive chemically converted graphene prepared from mildly oxidized graphene oxide, J. Mater. Chem. 21 (20), 7376 (2011). DOI: 10.1039/c1jm10768b.
  • Y. Li et al., The effect of the ultra-sonication pre-treatment of graphene oxide (GO) on the mechanical properties of GO/polyvinyl alcohol composites, Carbon 55, 321 (2013). DOI: 10.1016/j.carbon.2012.12.071.
  • C. Yu, C. F. Wan, and S. Chen, Facile access to graphene oxide from ferro-induced oxidation, Sci. Rep. 6, 17071 (2016). DOI: 10.1038/srep17071.
  • W. S. Hummers, and R. E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc. 80 (6), 1339 (1958). DOI: 10.1021/ja01539a017.
  • D. C. Marcano et al., Improved synthesis of graphene oxide, ACS Nano 4 (8), 4806 (2010). DOI: 10.1021/nn1006368.
  • B. C. Brodie, On the atomic weight of graphite, Philos. Trans. R Soc. Lond. 149, 249 (1859).
  • L. Staudenmaier, Verfahren zur darstellung der graphitsäure, Ber. Dtsch. Chem. Ges. 31 (2), 1481 (1898). DOI: 10.1002/cber.18980310237.
  • F. Kremer, and A. Schonhals, Broadband Dielectric Spectroscopy (Springer, Berlin, 2003).
  • X. Sun et al., Nano-graphene oxide for cellular imaging and drug delivery, Nano Res. 1 (3), 203 (2008). DOI: 10.1007/s12274-008-8021-8.
  • H. L. Guo et al., a green approach to the synthesis of graphene nanosheets, ACS Nano 3 (9), 2653 (2009). DOI: 10.1021/nn900227d.
  • Z. Mo et al., Preparation and characterization of a PMMA/Ce(OH)3, Pr2O3/graphite nanosheet composite, Polymer 46 (26), 12670 (2005). DOI: 10.1016/j.polymer.2005.10.117.
  • T. Y. Zhang, and D. Zhang, Aqueous colloids of graphene oxide nanosheets by exfoliation of graphite oxide without ultrasonication, Bull. Mater. Sci. 34 (1), 25 (2011). DOI: 10.1007/s12034-011-0048-x.
  • J. Li et al., The preparation of graphene oxide and its derivatives and their application in bio-tribological systems, Lubricants 2 (3), 137 (2014)., DOI: 10.3390/lubricants2030137.
  • J. Saji, A. Khare, and S. P. Mahapatra, Impedance and dielectric spectroscopy of nano-graphite reinforced silicon elastomer nanocomposites, Fibers Polym. 16 (4), 883 (2015). DOI: 10.1007/s12221-015-0883-2.
  • S. K. Tiwari, R. N. P. Choudhary, and S. P. Mahapatra, Dynamic mechanical and dielectric relaxation studies of chlorobutyl elastomer nanocomposites: Effect of nanographite loading and temperature, High Perform. Polym. 27 (3), 274 (2015). DOI: 10.1177/0954008314545137.
  • G. Sahu et al., (Corresponding Author), Thermal conductivity, thermal diffusivity, and volumetric heat capacity of silicone elastomer nanocomposites: Effect of temperature and MWCNT and nano-graphite loadings, High Perform. Polym. 30, 1 (2018).
  • J. Saji, A. Khare, and S. P. Mahapatra, Relaxation behavior of nano-graphite reinforced silicon elastomer nanocomposites, High Perform. Polym. 28 (1), 3 (2016). DOI: 10.1177/0954008314568729.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.