142
Views
0
CrossRef citations to date
0
Altmetric
Section B: Dielectric Properties

Two-Step Poling for Improved Piezoelectric Properties in Lead-Free (Ba0.88Ca0.12)(Ti0.94Sn0.06)O3 Ceramic System

&
Pages 134-143 | Received 01 Oct 2018, Accepted 16 Sep 2019, Published online: 30 Dec 2019

References

  • J. Rodel et al., Perspective on the development of lead‐free piezoceramics, J. Am. Ceram. Soc. 92 (6), 1153 (2009). DOI: 10.1111/j.1551-2916.2009.03061.x.
  • N. Setter et al., Ferroelectric thin films: review of materials, properties, and applications, J. Appl. Phys. 100 (5), 051606 (2006). DOI: 10.1063/1.2336999.
  • T. R. Shrout, and S. Zhang, Lead-free piezoelectric ceramics: alternatives for PZT? J. Electroceram. 19 (1), 113 (2007). DOI: 10.1007/s10832-007-9047-0.
  • T. Takenaka, H. Nagata, and Y. Hiruma, Current developments and prospective of lead-free piezoelectric ceramics, J. Appl. Phys. 47, 37 (2008).
  • Y. Saito et al., Lead-free piezoceramics, Nature. 432 (7013), 84 (2004). DOI: 10.1038/nature03028.
  • D. Xue et al., Large piezoelectric effect in Pb-free Ba (Ti,Sn)O3-x(Ba,Ca)TiO3 ceramics, Appl. Phys. Lett. 99 (12), 122901 (2011). DOI: 10.1063/1.3640214.
  • S. Mittal, R. Laishram, and K. C. Singh, Improved electrical properties of lead-free neodymium doped Ba0.85Ca0.15Zr0.1Ti0.9O3 piezoceramics, Mater. Res. Bull. 105, 253 (2018). DOI: 10.1016/j.materresbull.2018.04.036.
  • M. Acosta et al., BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives, Appl. Phys. Rev. 4 (4), 041305 (2017). DOI: 10.1063/1.4990046.
  • H. Du et al., Preparation and piezoelectric properties of (K0. 5Na0. 5) NbO3 lead-free piezoelectric ceramics with pressure-less sintering, Mater. Sci. Eng. B. 131 (1–3), 83 (2006). DOI: 10.1016/j.mseb.2006.03.039.
  • P. Kantha et al., Phase formation and electrical properties of BNLT-BZT lead-free piezoelectric ceramic system, Curr. Appl. Phys. 9 (2), 460 (2009). DOI: 10.1016/j.cap.2008.04.004.
  • Y. Zhang et al., Piezoelectric and ferroelectric properties of Bi-compensated (Bi1/2 Na1/2)TiO3-(Bi1/2 K1/2)TiO3 lead-free piezoelectric ceramics, J. Appl. Phys. 103 (7), 074109 (2008). DOI: 10.1063/1.2902805.
  • K. C. S. Chitra, Compositional optimization of lead-free (Ba1-xCax)(Ti1-ySny)O3 ceramics: a structural and electrical perspective, J. Alloys Compd. 765, 869 (2018).
  • A. Kumar et al., Poling electric field dependent domain switching and piezoelectric properties of mechanically activated (Pb0.92La0.08)(Zr0.60Ti0.40)O3 ceramics, J. Mater. Sci. Mater. Electron. 26, 3757 (2015). DOI: 10.1007/s10854-015-2899-1.
  • L. B. Kong et al., Progress in synthesis of ferroelectric ceramics materials via high energy mechanochemical technique, Prog. Mater. Sci. 53 (2), 207 (2008). DOI: 10.1016/j.pmatsci.2007.05.001.
  • T. Karaki et al., Lead-Free piezoelectric ceramics with large dielectric and piezoelectric constants manufactured from BaTiO3 nano-powder, Jpn. J. Appl. Phys. 46 (4), L97 (2007). DOI: 10.1143/JJAP.46.L97.
  • H. Takahasi et al., Lead free Barium titanate ceramics with large piezoelectric constant fabricated using microwave sintering, Jpn. J. Appl. Phys. 45, L30 (2006). DOI: 10.1143/JJAP.45.L30.
  • V. C. S. Prasad, and L. G. K. Kumar, Studies on some BaTiO3 based commercial electroceramics, Ferroelectrics 102 (1), 141 (1990). DOI: 10.1080/00150199008221472.
  • H. L. Du et al., Effect of poling condition on piezoelectric properties of (K0.5Na0.5)NbO3–LiNbO3 lead-free piezoelectric ceramics, Mater. Sci. Eng. B 137 (1–3), 175 (2007). DOI: 10.1016/j.mseb.2006.11.020.
  • J. Fu, R. Z. Zuo, and Y. Liu, X-ray analysis of phase coexistence and electric poling processing in alkaline niobate-based compositions, J. Alloys Compd. 493 (1–2), 197 (2010). DOI: 10.1016/j.jallcom.2009.12.052.
  • C. H. Hong et al., Lead free piezocermics-where to move on? J. Materiomics 2 (1), 1 (2016). DOI: 10.1016/j.jmat.2015.12.002.
  • Y. Xu, Ferroelectric Materials and Their Applications (Academic Press, North Holland, 1991)
  • A. B. Kounga et al., High temperature poling of ferroelectrics, J. Appl. Phys. 104 (2), 024116 (2008). DOI: 10.1063/1.2959830.
  • H. Kungl, and M. J. Hoffmann, Temperature dependence of poling strain and strain under high electric fields in La Sr-doped morphotropic PZT and its relation to changes in structural characteristics, Acta Mater. 55 (17), 5780 (2007). DOI: 10.1016/j.actamat.2007.06.035.
  • H. Du et al., An approach to further improve piezoelectric properties of K0.5Na0.5NbO3-based lead free ceramics, Appl. Phys. Lett. 91 (20), 202907 (2007). DOI: 10.1063/1.2815750.
  • S. Su et al., Poling dependence and stability of piezoelectric properties of Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 ceramics with huge piezoelectric coefficients, Curr. Appl. Phys. 11 (3), S120 (2011). DOI: 10.1016/j.cap.2011.01.034.
  • J. Wu et al., Composition and poling condition-induced electrical behavior of (Ba0.85Ca0.15)(Ti1−xZrx)O3 lead-free piezoelectric ceramics, J. Eur. Ceram. Soc. 32 (4), 891 (2012). DOI: 10.1016/j.jeurceramsoc.2011.11.003.
  • D. Damjanovic et al., What can be expected from lead-free piezoelectric materials? Funct. Mater. Lett. 03 (01), 5 (2010). DOI: 10.1142/S1793604710000919.
  • M. Davis et al., Rotator and extender ferroelectrics: importance of the shear coefficient to the piezoelectric properties of domain-engineered crystals and ceramics, J. Appl. Phys. 101 (5), 054112 (2007). DOI: 10.1063/1.2653925.
  • R. Guo et al., Origin of the high piezoelectric response in PbZr1-xTixO3, Phys. Rev. Lett. 84 (23), 5423 (2000). DOI: 10.1103/PhysRevLett.84.5423.
  • H. Fu, and R. E. Cohen, Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics, Nature 403 (6767), 281 (2000). DOI: 10.1038/35002022.
  • S. Wada, A. Seike, and T. Tsurumi, Poling treatment and piezoelectric properties of potassium niobate ferroelectric single crystals, Jpn. J. Appl. Phys. 40 (9B), 5690 (2001). DOI: 10.1143/JJAP.40.5690.
  • J. P. Praveen et al., Effect of poling process on piezoelectric properties of sol-gel derived BZT-BCT ceramics, J. Eur. Ceram. Soc. 35 (6), 1785 (2015). DOI: 10.1016/j.jeurceramsoc.2014.12.010.
  • A. K. Kalyani et al., Orthorhombic-tetragonal phase coexistence and enhance piezo-response at room temperature in Zr, Sn and Hf modified BaTiO3, Appl. Phys. Lett. 104 (25), 252906 (2014). DOI: 10.1063/1.4885516.
  • H. F. Kay, and P. Vousden, XCV. Symmetry changes in barium titanate at low temperature and their relation to its ferroelectric properties, Philos. Mag. 40 (309), 1019 (1949). DOI: 10.1080/14786444908561371.
  • G. Shirane, and S. Hoshino, On the phase transition in lead titanate, J. Phys. Soc. Jpn. 6 (4), 265 (1951). DOI: 10.1143/JPSJ.6.265.
  • G. Shirane, K. Suzuki, and A. Takeda, Phase transition in solid solution of PbZrO3 and PbTiO3 (II) X-ray study, J. Phys. Soc. Jpn. 7 (1), 12 (1952). DOI: 10.1143/JPSJ.7.12.
  • H. H. Wieder, Ferroelectric hysteresis in barium titanate single crystals, J. appl. Phys. 26 (12), 1479 (1955). DOI: 10.1063/1.1721934.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.