82
Views
0
CrossRef citations to date
0
Altmetric
Section C: Electrical Properties

Temperature Dependence of Energy Storage Density and Differential Permittivity and Bandgap Study of Relaxor (Pb,La)Zr0.65Ti0.35O3

, &
Pages 153-162 | Received 01 Oct 2018, Accepted 12 Aug 2019, Published online: 30 Dec 2019

References

  • G. H. Haertling, and C. E. Land, Hot-pressed (Pb,La)(Zr,Ti)O3 ferroelectric ceramics for electrooptic applications, J. Am. Ceram. Soc. 54 (1), 1 (1971). DOI: 10.1111/j.1151-2916.1970.tb12105.x-i1.
  • G. H. Haertling, and C. E. Land, Recent improvements in the optical and electrooptic properties of PLZT ceramics, Ferroelectrics 3 (1), 269 (1972). DOI: 10.1080/00150197208235318.
  • K. Okazaki, and K. Nagata, Effects of grain size and porosity on electrical and optical properties of PLZT ceramics, J. Am. Ceram. Soc. 56 (2), 82 (1973). DOI: 10.1111/j.1151-2916.1973.tb12363.x.
  • C. Michel, and A. Sicignano, Observation of field-induced microstructure in β phase of 8∕65∕35 PLZT electro – optic ceramics, Appl. Phys. Lett. 24 (11), 559 (1974). DOI: 10.1063/1.1655053.
  • K. Okazaki, I. Ohtsubo, and K. Toda, Electrical, optical and acoustic properties of PLZT ceramics by two-stage processing, Ferroelectrics 10 (1), 195 (1976). DOI: 10.1080/00150197608241977.
  • W. R. Salaneck, Temperature‐dependent ferroelectric domain alignment in PLZT ceramic, J. Appl. Phys. 43 (11), 4468 (1972). DOI: 10.1063/1.1660945.
  • K. Carl, and K. Geisen, Dielectric and optical properties of a quasi-ferroelectric PLZT ceramic. Proc. IEEE 61 (7), 967 (1973). DOI: 10.1109/PROC.1973.9186.
  • E. T. Keve, and A. D. Annis, Studies of phases, phase transitions and properties of some PLZT ceramics, Ferroelectrics 5 (1), 77 (1973). DOI: 10.1080/00150197308235782.
  • A. H. Meitzler, and H. M. O'Bryan, Polymorphism and penferroelectricity in PLZT ceramics, Proc. IEEE 61 (7), 959 (1973). DOI: 10.1109/PROC.1973.9185.
  • A. R. James, and J. Subrahmanyam, Processing and structure-property relation of fine-grained PLZT ceramics derived from mechanochemical synthesis, J. Mater. Sci.: Mater. Electron. 17 (7), 529 (2006). DOI: 10.1007/s10854-006-8236-y.
  • A. R. James, J. Subrahmanyam, and K. L. Yadav, Structural and electrical properties of nanocrystalline PLZT ceramics synthesized via mechanochemical processing, J. Phys. D: Appl. Phys. 39 (10), 2259 (2006). DOI: 10.1088/0022-3727/39/10/039.
  • M. A. Mohiddon, and K. L. Yadav, Effect of Fe doping on dielectric, ferroelectric and pyroelectric properties of PLZT (8/65/35), J. Phys. D: Appl. Phys. 40 (23), 7540 (2007). DOI: 10.1088/0022-3727/40/23/045.
  • M. A. Mohiddon, and K. L. Yadav, Dielectric dispersion study of Mn-doped PLZT (8/65/35), Phys. Status Solidi A. 206 (7), 1606 (2009). DOI: 10.1002/pssa.200825075.
  • O. Kersten, A. Rost, and G. Schmidt, Dielectric dispersion of relaxor ferroelectrics (SBN 75 and PLZT 8/65/35), Phys. Stat. Sol. A. 75 (2), 495 (1983). DOI: 10.1002/pssa.2210750220.
  • S. Miga, and K. Wójcik, Investigation of the diffuse phase transition in PLZTX/65/35 ceramics, X= 7–10, Ferroelectrics 100 (1), 167 (1989). DOI: 10.1080/00150198908007911.
  • S. Samanta, V. Sankaranarayanan, and K. Sethupathi, Electrocaloric Effect with Variations of Diffusivity in Relaxor Ferroelectric Materials. J. Electron. Mater. 48 (12), 7595 (2019). 10.1007/s11664-019-07609-5
  • A. Krumins, T. Shiosaki, and S. Koizumi, Spontaneous transition between relaxor and ferroelectric states in lanthanum-modified lead zirconate titanate (6–7)/65/35. Jpn. J. Appl. Phys. 33 (Part 1, No. 9A), 4940 (1994). DOI: 10.1143/JJAP.33.4940.
  • S. Kamba et al., Dielectric dispersion of the relaxor PLZT ceramics in the frequency range 20 Hz–100 THz, J. Phys: Condens. Matter. 12 (4), 497 (2000). DOI: 10.1088/0953-8984/12/4/309.
  • V. Bovtun et al., Structure of the dielectric spectrum of relaxor ferroelectrics, J. Eur. Ceram. Soc. 21 (10–11), 1307 (2001). DOI: 10.1016/S0955-2219(01)00007-3.
  • S. Kamba et al., High-temperature soft phonon behaviour in PLZT 8/65/35 relaxor ferroelectrics, Phase Trans. 81 (11–12), 1005 (2008). DOI: 10.1080/01411590802457813.
  • S. G. Lu et al., Organic and inorganic relaxor ferroelectrics with giant electrocaloric effect, Appl. Phys. Lett. 97 (16), 162904 (2010). DOI: 10.1063/1.3501975.
  • R. Pirc et al., Electrocaloric effect in relaxor ferroelectrics, J. Appl. Phys. 110 (7), 074113 (2011). DOI: 10.1063/1.3650906.
  • M. B. Rauls et al., The effect of temperature on the large field electromechanical response of relaxor ferroelectric 8/65/35 PLZT, Acta Mater. 59 (7), 2713 (2011). DOI: 10.1016/j.actamat.2011.01.009.
  • F. Y. Lee et al., Pyroelectric waste heat energy harvesting using relaxor ferroelectric 8/65/35 PLZT and the Olsen cycle, Smart Mater. Struct. 21 (2), 025021 (2012). DOI: 10.1088/0964-1726/21/2/025021.
  • S. Samanta et al., Enhanced ferroelectricity in PLZT ceramic by precise La-doping, minimizing pyrochlore phase and lead loss, Vacuum 157, 514 (2018). DOI: 10.1016/j.vacuum.2018.08.053.
  • A. K. Yadav et al., Investigation of La and Al substitution on the spontaneous polarization and lattice dynamics of the Pb(1-x)LaxTi(1-x)AlxO3 ceramics, J. Appl. Phys. 123 (12), 124102 (2018). DOI: 10.1063/1.5017765.
  • IEEE standard definitions of primary ferroelectric terms. ANSI/IEEE STD 180-1986 (1986).
  • S. Samanta, V. Sankaranarayanan, and K. Sethupathi, Effect of Nb and Fe co-doping on microstructure, dielectric response, ferroelectricity and energy storage density of PLZT, J. Mater. Sci.: Mater. Electron. 29 (23), 20383 (2018). DOI: 10.1007/s10854-018-0173-z.
  • S. Samanta et al., Band gap reduction and redshift of lattice vibrational spectra in Nb and Fe co-doped PLZT, J. Mater. Sci. 52 (22), 13012 (2017). DOI: 10.1007/s10853-017-1425-7.
  • G. H. Haertling, PLZT electrooptic materials and applications—a review, Ferroelectrics 75 (1), 25 (1987). DOI: 10.1080/00150198708008208.
  • S. B. Majumder, M. Jain, and R. S. Katiyar, Investigations on the optical properties of sol–gel derived lanthanum doped lead titanate thin films, Thin Solid Films 402 (1–2), 90 (2002). DOI: 10.1016/S0040-6090(01)01713-8.
  • A. Stashans, and F. Maldonado, A quantum mechanical study of La-doped Pb(Zr,Ti)O3, Phys. B Condens. Mat. 392 (1–2), 237 (2007). DOI: 10.1016/j.physb.2006.11.026.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.