196
Views
0
CrossRef citations to date
0
Altmetric
Section F: Other Emerging Areas

Size Effect of Nanoscale Powders on the Polarization of the BCZT Piezoceramic: A Pyroelectric and Fatigue Perspective

&
Pages 122-130 | Received 01 Oct 2018, Accepted 12 Aug 2019, Published online: 09 Feb 2020

References

  • EU-Directive 2011/65/EU, Off. J. Eur. Communities: Legis 174, 88 (2011).
  • Directive (EU) 2017/2102, Off. J. Eur. Union. L. 305, 8 (2017).
  • D. Berlincourt, and H. Jaffe, Elastic and piezoelectric coefficients of single-crystal barium titanate, Phys. Rev. 111 (1), 143 (1958). DOI: 10.1103/PhysRev.111.143.
  • C. Singh, and K. C. Singh, Dysprosium doping on structural and electrical properties of lead free (Ba0.7Ca0.3)(Ti0.92Sn0.08)O3 ceramic system, J. Mater. Sci.: Mater. Electron. 29, 17630 (2018).
  • G. Shirane, R. Newnham, and R. Pepinsky, Dielectric properties and phase transitions of NaNbO3 and (Na,K) NbO3, Phys. Rev. 96 (3), 581 (1954). DOI: 10.1103/PhysRev.96.581.
  • W. Liu, and X. Ren, Large piezoelectric effect in Pb-free ceramics, Phys. Rev. Lett. 103 (25), 257602 (2009). DOI: 10.1103/PhysRevLett.103.257602.
  • S. W. Zhang et al., Phase-transition behavior and piezoelectric properties of lead-free (Ba0.95Ca0.05)(Ti1− xZrx)O3 ceramics, J. Alloys Compd. 506 (1), 131 (2010). DOI: 10.1016/j.jallcom.2010.06.157.
  • D. Xue et al., Large piezoelectric effect in Pb-free Ba(Ti,Sn)O3-x(Ba,Ca)TiO3 ceramics, Appl. Phys. Lett. 99 (12), 122901 (2011). DOI: 10.1063/1.3640214.
  • S. Mittal, R. Laishram, and K. C. Singh, Multi-phase coexistence in yttrium-substituted Ba0.9Ca0.1Zr0.07Ti0.93O3 lead free piezoceramics, Ceram. Int. 45 (1), 1237 (2019). DOI: 10.1016/j.ceramint.2018.09.312.
  • W. Li et al., Piezoelectric and dielectric properties of (Ba1−xCax)(Ti0.95Zr0.05)O3 lead‐free ceramics, J. Am. Ceram. Soc. 93 (10), 2942 (2010). DOI: 10.1111/j.1551-2916.2010.03907.x.
  • W. Li et al., Polymorphic phase transition and piezoelectric properties of (Ba1−xCax)(Ti0.9Zr0.1)O3 lead-free ceramics, Phys. B (Amsterdam, Neth.) 405 (21), 4513 (2010). DOI: 10.1016/j.physb.2010.08.028.
  • Y. Tian et al., Phase transition behavior and large piezoelectricity near the morphotropic phase boundary of lead‐free (Ba0.85Ca0.15)(Zr 0.1Ti0.9)O3 ceramics, J. Am. Ceram. Soc. 96, 496 (2013). DOI: 10.1111/jace.12049.
  • W. Li et al., High piezoelectric d33 coefficient of lead-free (Ba0.93Ca0.07)(Ti0.95Zr0.05)O3 ceramics sintered at optimal temperature, Mater. Sci. Eng. B. 176 (1), 65 (2011). DOI: 10.1016/j.mseb.2010.09.003.
  • I. Coondoo et al., Enhanced piezoelectric properties of praseodymium‐modified lead‐free (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 ceramics, J. Am. Ceram. Soc. 98 (10), 3127 (2015). DOI: 10.1111/jace.13713.
  • J. Hao et al., Correlation between the microstructure and electrical properties in high‐performance (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead‐free piezoelectric ceramics, J. Am. Ceram. Soc. 95 (6), 1998 (2012). DOI: 10.1111/j.1551-2916.2012.05146.x.
  • Z. Wang et al., Strong photoluminescence and high piezoelectric properties of Eu-doped (Ba0.99Ca0.01)(Ti0.98 Zr0.02)O3 ceramics, J. Mater. Sci.: Mater. Electron. 28, 16561 (2017). DOI: 10.1007/s10854-017-7569-z.
  • F. Zeng et al., Relaxor phenomenon of (1-x)(Ba.85Ca.15)(Zr.09Ti.91)O3-xTa +0.6wt% Li2CO3 ceramics with high piezoelectric constant and Curie temperature, Ceram. Int. 44 (9), 10677 (2018). DOI: 10.1016/j.ceramint.2018.03.098.
  • P. Jaimeewong et al., Ferroelectric, piezoelectric and dielectric behaviors of CoO‐and Fe2O3‐Doped BCZT ceramics, Phys. Status Solidi A. 215 (20), 1701023 (2018). DOI: 10.1002/pssa.201701023.
  • A. Frattini et al., BCZT ceramics prepared from activated powders, Procedia Mater. Sci. 1, 359 (2012). DOI: 10.1016/j.mspro.2012.06.048.
  • B. K. Pandey et al., Electrical properties of 0-3 0.5(Ba0.7Ca0.3)TiO3–0.5Ba(Zr0.2Ti0.8)O3/PVDF nanocomposites, J. Adv. Dielectr. 8 (4), 1850027 (2018). DOI: 10.1142/S2010135X18500273.
  • E. Roduner, Size matters: Why nanomaterials are different, Chem. Soc. Rev. 35 (7), 583 (2006). DOI: 10.1039/b502142c.
  • A. I. Gusev, and A. S. Kurlov, Production of nanocrystalline powders by high-energy ball milling: Model and experiment, Nanotechnol. 19 (26), 265302 (2008). DOI: 10.1088/0957-4484/19/26/265302.
  • C. Dong, and X. Powder, Windows-95-based program for powder X-ray diffraction data processing, J. Appl. Crystallogr. 32 (4), 838 (1999). DOI: 10.1107/S0021889899003039.
  • F. S. Bajo, and F. L. Cumbrera, The use of the Pseudo-Voigt Function in the variance method of X-ray line-broadening analysis, J. Appl. Crystallogr. 30, 427 (1997). DOI: 10.1107/S0021889896015464.
  • A. Putnis, Introduction to Mineral Sciences (Cambridge University Press: Cambridge, UK, 1992).
  • D. Damjanovic, Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics, Rep. Prog. Phys. 61 (9), 1267 (1998). DOI: 10.1088/0034-4885/61/9/002.
  • S. Jachalke et al., How to measure the pyroelectric coefficient? Appl. Phys. Rev. 4 (2), 021303 (2017). DOI: 10.1063/1.4983118.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.