90
Views
0
CrossRef citations to date
0
Altmetric
Articles

Synthesis and Performance of Cr Doped Li3V2(PO4)3/C Cathode Materials for Li Ion Batteries

, , , &
Pages 56-65 | Received 20 Jun 2019, Accepted 03 Feb 2020, Published online: 07 Apr 2020

References

  • Z. Wang, H. Guo, and P. Yan, In-situ synthesis of reduced graphene oxide modified lithium vanadium phosphate for high-rate lithium-ion batteries via microwave irradiation, Electrochim. Acta 174 (1), 26 (2015). DOI: 10.1016/j.electacta.2015.05.154.
  • Q. Shi et al., An amorphous wrapped nanorod LiV3O8 electrode with enhanced performance for lithium ion batteries, RSC Adv. 2 (18), 7273 (2012). DOI: 10.1039/c2ra20769a.
  • S. Liang et al., LiV3O8/Ag composite nanobelts with enhanced performance as cathode material for rechargeable lithium batteries, J. Alloys Comp. 583 (3), 351 (2014). DOI: 10.1016/j.jallcom.2013.08.124.
  • B. Dunn, H. Kamath, and J. M. Tarascon, Electrical energy storage for the grid: A battery of choices, Science 334 (6058), 928 (2011). DOI: 10.1126/science.1212741.
  • J. Liu et al., The defect chemistry of LiFePO4, prepared by hydrothermal method at different pH values, J. Power Sources 194 (1), 536 (2009). DOI: 10.1016/j.jpowsour.2009.05.007.
  • S. L. Yang et al., Solvothermal synthesis of nano-LiMnPO4 from Li3PO4 rod-like precursor: Reaction mechanism and electrochemical properties, J. Mater. Chem. 22 (48), 25402 (2012). DOI: 10.1039/c2jm34193j.
  • H. H. Li et al., Fast synthesis of core-shell LiCoPO4/C nanocomposite via microwave heating and its electrochemical Li intercalation performances, Electrochem. Commun. 11 (1), 95 (2009). DOI: 10.1016/j.elecom.2008.10.025.
  • X. Rui et al., Li3V2(PO4)3, nanocrystals embedded in a nanoporous carbon matrix supported on reduced graphene oxide sheets: Binder-free and high rate cathode material for lithium-ion batteries, J. Power Sources 214 (4), 171 (2012). DOI: 10.1016/j.jpowsour.2012.03.113.
  • J. Wang et al., Effect of Ni doping on electrochemical performance of Li3V2(PO4)3/C cathode material prepared by polyol process, Ceram. Int. 40 (7), 11251 (2014). DOI: 10.1016/j.ceramint.2014.03.172.
  • X. Xin et al., Scalable synthesis of TiO2/graphene nanostructured composite with high-rate performance for lithium ion batteries, ACS Nano 6 (12), 11035 (2012). DOI: 10.1021/nn304725m.
  • X. Li et al., Ionothermal synthesis and rate performance studies of nanostructured Li3V2(PO4)3/C composites as cathode materials for lithium-ion batteries, J. Solid State Electrochem. 17 (7), 1991 (2013). DOI: 10.1007/s10008-013-2056-9.
  • Y. Wang et al., Effects of Nd-doping on the structure and electrochemical properties of Li3V2(PO4)3/C synthesized using a microwave solid-state route, Solid State Ionics 261 (261), 11 (2014). DOI: 10.1016/j.ssi.2014.03.027.
  • Y. J. Li et al., Study on carbon-coating Li3V2(PO4)3 cathode materials prepared with different carbon sources, AMR. Res. 581-582 (1), 565 (2012). DOI: 10.4028/www.scientific.net/AMR.581-582.565.
  • S. Wang et al., Nanostructured Li3V2(PO4)3/C composite as high-rate and long-life cathode material for lithium ion batteries, Electrochim. Acta 143, 297 (2014). DOI: 10.1016/j.electacta.2014.07.139.
  • B. Pei et al., Nanostructured Li3V2(PO4)3 cathode supported on reduced graphene oxide for lithium-ion batteries, J. Power Sources 239 (10), 475 (2013). DOI: 10.1016/j.jpowsour.2013.03.171.
  • Y. Z. Dong, Y. M. Zhao, and H. Duan, The effect of doping Mg2+ on the structure and electrochemical properties of Li3V2(PO4)3 cathode materials for lithium-ion batteries, Electroanal. Chem. 660 (1), 14 (2011). DOI: 10.1016/j.jelechem.2011.05.024.
  • Z. Li et al., Superior rate performance of Li3V2(PO4)3 co-modified by Fe-doping and rGO-incorporation, RSC Adv. 6 (13), 10334 (2016). DOI: 10.1039/C5RA26636J.
  • T. Zhai, M. S. Zhao, and D. D. Wang, Effect of Mn-doping on performance of Li3V2(PO4)3/C cathode material for lithium ion batteries, Trans. Nonferrous Metals Soc. China 21 (3), 523 (2011). DOI: 10.1016/S1003-6326(11)60746-2.
  • J. Xu et al., Electrochemical performance of Zr-doped Li3V2(PO4)3/C composite cathode materials for lithium ion batteries, J. Appl. Electrochem. 45 (2), 123 (2015). DOI: 10.1007/s10800-014-0782-z.
  • H. U. De Peng, and L. U. Dao Rong, Effects of doping Co∼(2+) on the electrochemical performance of Li3V2(PO4)3, Battery Bimonthly 22 (11), 3144 (2012).
  • M. M. Ren et al., Core − Shell Li3V2(PO4)3@C composites as cathode materials for lithium-ion batteries, J. Phys. Chem. C 112 (14), 5689 (2008). DOI: 10.1021/jp800040s.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.