135
Views
0
CrossRef citations to date
0
Altmetric
Articles

Preparation of Multiferroic YFeO3 Nanofibers and the Photocatalytic Activity under Visible Irradiation

, , , , , , & show all
Pages 105-111 | Received 04 Nov 2019, Accepted 03 Feb 2020, Published online: 07 Apr 2020

References

  • S. Irfan et al., Enhanced photocatalytic activity of La3+ and Se4+ co-doped bismuth ferrite nanostructures. J. Mater. Chem. A 5 (22), 11143 (2017). DOI: 10.1039/C7TA01847A.
  • N. Afifah, and R. Saleh, Enhancement of photocatalytic activities of perovskite LaFeO3 composite by incorporating nanographene platelets. IOP Conf. Ser. Mater. Sci. Eng. 188, 012054 (2017). DOI: 10.1088/1757-899X/188/1/012054.
  • Q. Fu et al., Enhanced photocatalytic activity on polarized ferroelectric KNbO3. RSC Adv. 6 (110), 108883 (2016). DOI: 10.1039/C6RA23344A.
  • L. H. Bac et al., Tailoring the structural, optical properties and photocatalytic behavior of ferroelectric Bi0.5K0.5TiO3 nanopowders. Mater. Lett. 164, 631 (2016). DOI: 10.1016/j.matlet.2015.11.086.
  • X. M. Lv et al., Microwave-assisted synthesis of nanocrystalline YFeO3 and study of its photoactivity. Mater. Sci. Eng. B 138, 289 (2007). DOI: 10.1016/j.mseb.2007.01.003.
  • Y. W. Zhang et al., Controllable synthesis of hexagonal and orthorhombic YFeO3 and their visible-light photocatalytic activities. Mater. Lett. 81, 1 (2012). DOI: 10.1016/j.matlet.2012.04.080.
  • P. Tang et al., Magnetically recoverable and visible-light-driven nanocrystalline YFeO3 photocatalysts. Catal. Sci. Technol. 1 (7), 1145 (2011). DOI: 10.1039/c1cy00199j.
  • P. Tang et al., Hydrothermal processing-assisted synthesis of nanocrystalline YFeO3 and its visible-light photocatalytic activity. CNANO 8 (1), 64 (2012). DOI: 10.2174/1573413711208010064.
  • S. D. Li et al., Photoinduced charge property of nanosized perovskite-type LaFeO3 and its relationships with photocatalytic activity under visible irradiation. Mater. Res. Bull. 42 (2), 203 (2007). DOI: 10.1016/j.materresbull.2006.06.010.
  • S. Mathur et al., Sonochemical synthesis of nanocrystalline rare earth orthoferrites using Fe(CO)5 precursor. Chem. Mater. 16 (10), 1906 (2004). DOI: 10.1021/cm0311729.
  • Y. Y. Chen, J. Yang et al., Synthesis YFeO3 by salt-assisted solution combustion method and its photocatalytic activity. J. Ceram. Soc. Japan 122 (1422), 146 (2014). DOI: 10.2109/jcersj2.122.146.
  • J. Pinkas et al., Nanoscopic yttrium-iron garnet and perovskite by sonolysis of M(acac)3 complexes. J. Phys. Chem. C 114 (32), 13557 (2010). DOI: 10.1021/jp104091n.
  • S. Liu et al., One-dimension-based spatially ordered architectures for solar energy conversion. Chem. Soc. Rev. 44 (15), 5053 (2015). DOI: 10.1039/C4CS00408F.
  • M. Q. Yang et al., Artificial photosynthesis over graphene-semiconductor composites. Are we getting better? Chem. Soc. Rev. 43 (24), 8240 (2014). DOI: 10.1039/C4CS00213J.
  • N. Bhardwaj, and S. C. Kundu, Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 28 (3), 325 (2010). DOI: 10.1016/j.biotechadv.2010.01.004.
  • R. L. Zhang et al., Dielectric behavior of hexagonal and orthorhombic YFeO3 prepared by modified sol-gel method. J. Electroceram. 32 (2-3), 187 (2014). DOI: 10.1007/s10832-013-9869-x.
  • A. P. Kuz’menko, and P. V. Abakumov, Raman imaging of domains and fine structure of domain walls in YFeO3 crystals. Tech. Phys. Lett. 37 (11), 1058 (2011). DOI: 10.1134/S1063785011110265.
  • M. N. Iliev et al., Raman spectroscopy of orthorhombic perovskitelike YMnO3 and LaMnO3. Phys. Rev. B 57 (5), 2872 (1998). DOI: 10.1103/PhysRevB.57.2872.
  • G. S. Gallego, N. M. Alzate, and O. Arnache, A novel LaFeO3-xNx oxynitride. Synthesis and characterization. J. Alloys Comp. 549, 163 (2013). DOI: 10.1016/j.jallcom.2012.09.042.
  • X. P. Yuan, Y. Sun, and M. X. Xu, Effect of Gd substitution on the structure and magnetic properties of YFeO3 ceramics. J. Solid State Chem. 196 (196), 362 (2012). DOI: 10.1016/j.jssc.2012.06.042.
  • W. Zhang et al., One-step synthesis of yttrium orthoferrite nanocrystals via sol-gel auto-combustion and their structural and magnetic characteristics. Mater. Chem. Phys. 137 (3), 877 (2013). DOI: 10.1016/j.matchemphys.2012.10.029.
  • G. S. Anjusree et al., Fabricating fiber, rice and leaf-shaped TiO2 by tuning the chemistry between TiO2 and the polymer during electrospinning. IJMR 104 (6), 573 (2013). DOI: 10.3139/146.110898.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.