Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 212, 2020 - Issue 1
138
Views
0
CrossRef citations to date
0
Altmetric
Articles

Reliability Risk Analysis for the Aeroelastic Piezoelectric Energy Harvesters

, , &
Pages 156-169 | Received 04 May 2020, Accepted 21 Aug 2020, Published online: 11 Nov 2020

References

  • M. Ouyang, Review on modeling and simulation of interdependent critical infrastructure systems, Reliab. Eng. Syst. Saf. 121, 43 (2014). DOI: 10.1016/j.ress.2013.06.040.
  • M. L. Cummings, Factors that influence the acceptance of new aerospace risk assessment techniques, AIAA Scitech 2020 Forum, USA, 2020, p. 0707. DOI: 10.2514/6.2020-0707.
  • K. Choudhary, and S. Monisha, Aerospace power supply modules reliability estimation using ARINC reliability apportionment technique. In Varde P., Prakash R., Vinod G. (eds)., Reliability, safety and hazard assessment for risk-based technologies. Lecture notes in mechanical engineering. (Springer, 2020), pp. 825–832. DOI: 10.1007/978-981-13-9008-1_69
  • H. Elahi, M. Eugeni, and P. Gaudenzi, A review on mechanisms for piezoelectric-based energy harvesters, Energies 11 (7), 1850 (2018). DOI: 10.3390/en11071850.
  • M. Eugeni et al., Numerical and experimental investigation of piezoelectric energy harvester based on flag-flutter, Aerosp. Sci. Technol. 97, 105634 (2020). DOI: 10.1016/j.ast.2019.105634.
  • N. Guo et al., Assessing the vulnerability of megaprojects using complex network theory, Project Manage. J. 51 (4), 429 (2020). DOI: 10.1177/8756972820911236.
  • Y. Deng, Q. Li, and Y. Lu, A research on subway physical vulnerability based on network theory and FMECA, Saf. Sci. 80, 127 (2015). DOI: 10.1016/j.ssci.2015.07.019.
  • P. Gaudenzi, Smart Structures. Mathematical Modelling and Applications. (John Wiley and Sons, Ltd, USA, 2009).
  • A. Ali et al., Investigation of deformation in bimorph piezoelectric actuator: Analytical, numerical and experimental approach, Integr. Ferroelectr. 201 (1), 94 (2019). DOI: 10.1080/10584587.2019.1668694.
  • Y. Bouzelata et al., Mitigation of high harmonicity and design of a battery charger for a new piezoelectric wind energy harvester, Sens. Actuators A 273, 72 (2018). DOI: 10.1016/j.sna.2018.02.023.
  • H. Elahi, M. Eugeni, and P. Gaudenzi, Design and performance evaluation of a piezoelectric aeroelastic energy harvester based on the limit cycle oscillation phenomenon, Acta Astronaut. 157, 233 (2019). DOI: 10.1016/j.actaastro.2018.12.044.
  • A. Keshmiri, X. Deng, and N. Wu, New energy harvester with embedded piezoelectric stacks, Compos. Part B Eng. 163, 303 (2019). DOI: 10.1016/j.compositesb.2018.11.028.
  • H. Elahi et al., Response of piezoelectric materials on thermomechanical shocking and electrical shocking for aerospace applications, Microsyst. Technol. 24 (9), 3791 (2018). DOI: 10.1007/s00542-018-3856-8.
  • V. Memmolo et al., Experimental and numerical investigation of pzt response in composite structures with variable degradation levels, J. Mater. Eng. Perform. 28 (6), 3239 (2019). DOI: 10.1007/s11665-019-04011-4.
  • Z. Butt et al., Generation of electrical energy using lead zirconate titanate (pzt-5a) piezoelectric material: Analytical, numerical and experimental verifications, J. Mech. Sci. Technol. 30 (8), 3553 (2016). DOI: 10.1007/s12206-016-0715-3.
  • H. Elahi et al., Piezoelectric thermo electromechanical energy harvester for reconnaissance satellite structure, Microsyst. Technol. 25 (2), 665 (2019). DOI: 10.1007/s00542-018-3994-z.
  • H. Elahi et al., Stability of piezoelectric material for suspension applications, 2017 Fifth International Conference on Aerospace Science & Engineering (ICASE), Pakistan, IEEE, 2017, pp. 1–5.
  • R. F. Swati et al., Extended finite element method (XFEM) analysis of fiber reinforced composites for prediction of micro-crack propagation and delaminations in progressive damage: A review, Microsyst. Technol. 25 (3), 747 (2019). DOI: 10.1007/s00542-018-4021-0.
  • M. Usman Khan et al., Deflection of coupled elasticity–electrostatic bimorph pvdf material: Theoretical, FEM and experimental verification, Microsyst. Technol. 25 (8), 3235 (2019). DOI: 10.1007/s00542-018-4182-x.
  • C. Ayyildiz et al., Structure health monitoring using wireless sensor networks on structural elements, Ad Hoc Networks 82, 68 (2019). DOI: 10.1016/j.adhoc.2018.06.011.
  • S. Saxena, R. Kumar Dwivedi, and V. Khare, Simulation study of uncoupled electrical equivalent model of piezoelectric energy harvesting device interfaced with different electrical circuits. In Rawat B., Trivedi A., Manhas S., Karwal V. (eds.), Advances in Signal Processing and Communication. Lecture notes in electrical engineering, 526. (Springer, Singapore, 2019), pp. 591–600. DOI: 10.1007/978-981-13-2553-3_58
  • R. F. Swati et al., Investigation of tensile and in-plane shear properties of carbon fiber reinforced composites with and without piezoelectric patches for micro-crack propagation using extended finite element method, Microsyst. Technol. 25 (6), 2361 (2019). DOI: 10.1007/s00542-018-4120-y.
  • Z. Butt et al., Characterizing barium titanate piezoelectric material using the finite element method, Trans. Electr. Electron. Mater. 18 (3), 163 (2017).
  • A. Triplett, and D. Dane Quinn, The effect of non-linear piezoelectric coupling on vibration-based energy harvesting, J. Intell. Mater. Syst. Struct. 20 (16), 1959 (2009). DOI: 10.1177/1045389X09343218.
  • J. Johansson, and H. Hassel, An approach for modelling interdependent infrastructures in the context of vulnerability analysis, Reliab. Eng. Syst. Saf. 95 (12), 1335 (2010). DOI: 10.1016/j.ress.2010.06.010.
  • M. An, W. Lin, and A. Stirling, Fuzzy-reasoning-based approach to qualitative railway risk assessment, Proc. Inst. Mech Eng. Part F J. Rail Rapid Transit 220 (2), 153 (2006). DOI: 10.1243/09544097JRRT34.
  • Y. Lu, Q. Li, and W. Xiao, Case-based reasoning for automated safety risk analysis on subway operation: Case representation and retrieval, Saf. Sci. 57, 75 (2013). DOI: 10.1016/j.ssci.2013.01.020.
  • G. Park, H. H. Cudney, and D. J. Inman, Feasibility of using impedance-based damage assessment for pipeline structures, Earthquake Eng. Struct. Dyn. 30 (10), 1463 (2001). DOI: 10.1002/eqe.72.
  • J. Baulmann et al., A new oscillometric method for assessment of arterial stiffness: Comparison with tonometric and piezo-electronic methods, J. Hypertens. 26 (3), 523 (2008).
  • R. Jena et al., Seismic hazard and risk assessment: A review of state-of-the-art traditional and GIS models, Arab. J. Geosci. 13 (2), 50 (2020). DOI: 10.1007/s12517-019-5012-x.
  • J. Hegde, and B. Rokseth, Applications of machine learning methods for engineering risk assessment–A review, Saf. Sci. 122, 104492 (2020). DOI: 10.1016/j.ssci.2019.09.015.
  • J.-M. Salotti, and E. Suhir, Degraded situation awareness risk assessment in the aerospace domain, 2019 IEEE 5th International Workshop on Metrology for AeroSpace (MetroAeroSpace), Italy, IEEE, 2019, pp. 39–43. DOI: 10.1109/MetroAeroSpace.2019.8869575.
  • W. Li et al., A proactive process risk assessment approach based on job hazard analysis and resilient engineering, J. Loss Prev. Process Ind. 59, 54 (2019). DOI: 10.1016/j.jlp.2019.02.007.
  • V. P. Singh, Review of Risk Assessment: Procedures and Protocols by Edward A. Mcbean (2019). https://ascelibrary.org/doi/full/10.1061/%28ASCE%29HE.1943-5584.0001753
  • Z. William Birnbaum, On the importance of different components in a multicomponent system. Technical report, Washington Univ Seattle Lab of Statistical Research, 1968.
  • H. Dui et al., Semi-markov process-based integrated importance measure for multi-state systems, IEEE Trans. Rel. 64 (2), 754 (2015). DOI: 10.1109/TR.2015.2413031.
  • E. El-Neweihi, F. Proschan, and J. Sethuraman, Multistate coherent systems, J. Appl. Probab. 15 (4), 675 (1978). DOI: 10.2307/3213425.
  • R. E. Barlow, and A. S. Wu, Coherent systems with multi-state components, Math. OR. 3 (4), 275 (1978). DOI: 10.1287/moor.3.4.275.
  • W. S. Griffith, Multistate reliability models, J. Appl. Probab. 17 (3), 735 (1980). DOI: 10.2307/3212967.
  • B. Natvig, Multistate System Reliability (Wiley Encyclopedia of Operations Research and Management Science, 2010). DOI: /10.1002/9780470400531.eorms0553
  • A. Lisnianski, I. Frenkel, and Y. Ding, Multi-State System Reliability Analysis and Optimization for Engineers and Industrial Managers (Springer Science & Business Media, 2010). https://gnedenko.net/Journal/2010/RTA_3_2010.pdf#page=59
  • G. Levitin et al., The Universal Generating Function in Reliability Analysis and Optimization, Vol. 6 (Springer, 2005). https://link.springer.com/book/10.1007%2F1-84628-245-4
  • S. Si et al., Component state-based integrated importance measure for multi-state systems, Reliab. Eng. Syst. Saf. 116, 75 (2013). DOI: 10.1016/j.ress.2013.02.023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.