Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 214, 2021 - Issue 1
179
Views
3
CrossRef citations to date
0
Altmetric
Selected Papers of The Second Materials Research Society of Thailand International Conference (MRS-Thailand 2019)

Electrical and Mechanical Properties of Modified Barium Titanate by Doping an M-Type Hexagonal Ferrites

, , , , , & show all
Pages 2-10 | Received 28 Jun 2019, Accepted 07 Jun 2020, Published online: 16 Mar 2021

References

  • K. Miao et al., Fabrication of Y and Fe co-doped BaZr0.13Ti1.46O3 fine-grained ceramics for temperature-stable multilayer ceramic capacitors, Ceram. Int. 43 (12), 9099 (2017). DOI: 10.1016/j.ceramint.2017.04.056.
  • G. N. Bhargavi et al., Influence of Eu doping on the structural, electrical and optical behavior of barium zirconium titanate ceramic, Ceram. Int. 44 (2), 1817 (2018). DOI: 10.1016/j.ceramint.2017.10.116.
  • S. K. Ghosh, and S. K. Rout, Induced instability in local structure and ferroelectric polarization of rare earth modified BZT relaxor ceramics, Curr. Appl. Phys. 16 (9), 989 (2016). DOI: 10.1016/j.cap.2016.05.018.
  • J. Q. Qi et al., Dielectric properties of barium zirconate titanate (BZT) ceramics tailored by different donors for high voltage applications, Solid. State. Sci. 14 (10), 1520 (2012). DOI: 10.1016/j.solidstatesciences.2012.08.009.
  • K. K. Bajpai et al., Influence of Cd doping on the electro-strain of barium zirconate titanate ceramics, Ceram. Int. 43 (2), 1963 (2017). DOI: 10.1016/j.ceramint.2016.10.160.
  • A. Jain, A. K. Panwar, and A. K. Jha, Effect of ZnO doping on structural, dielectric, ferroelectric and piezoelectric properties of BaZr0.1Ti0.9O3 ceramics, Ceram. Int. 43 (2), 1948 (2017). DOI: 10.1016/j.ceramint.2016.10.157.
  • H. Zheng et al., Tunable performance of BaZr0.2Ti0.8O3 thin films prepared by pulsed laser deposition, Ceram. Int. 43 (16), 13154 (2017). DOI: 10.1016/j.ceramint.2017.07.008.
  • S. Yan et al., Effect of internal stresses on temperature-dependent dielectric properties of Fe-doped BZT ceramics, Ceram. Int. 43 (15), 12605 (2017)., DOI: 10.1016/j.ceramint.2017.06.138Get.
  • G. Tan, and X. Chen, Structure and multiferroic properties of barium hexaferrite ceramics, Mag. Mag. Mater. 327, 87 (2013). DOI: 10.1016/j.jmmm.2012.09.047.
  • W. S. Castro et al., Dielectric and magnetic characterization of barium hexaferrite ceramics, Ceram. Int. 41 (1), 241 (2015). DOI: 10.1016/j.ceramint.2014.08.064.
  • Z. Mosleh et al., Structural, magnetic and microwave absorption properties of Ce-doped barium hexaferrite, Mag. Mag. Mater. 397, 101 (2016). DOI: 10.1016/j.jmmm.2015.08.078.
  • Y. Zhang et al., Dielectric, magnetic and magnetoelectric properties of Ni0.5Zn0.5Fe2O4 + Pb(Zr0.48Ti0.52)O3 composite ceramics, Ceram. Int. 40 (4), 5853 (2014). DOI: 10.1016/j.ceramint.2013.11.027.
  • K. Pengpat et al., Phase formation and electrical properties of lead-free bismuth sodium titanate-potassium niobate ceramics, Curr. Appl. Phys. 8, 241 (2008).
  • K. Strecker et al., Fracture toughness measurements of LPS-SiC: A comparison of the indentation technique and the SEVNB method, Mat. Res. 8 (2), 121 (2005)., DOI: 10.1590/S1516-14392005000200004.
  • R. Morrell, Guidelines for Conducting Hardness Tests on Advanced Ceramics Materials, VAMAS Technical Report 8 (National Physical Laboratory, Teddington, Middlesex, TW11 0LW, UK, 1990).
  • D. B. Marshall, T. Noma, and A. G. Evans, A simple method for determining elastic modulus to hardness ratios using Knoop indentation measurements, J. Am. Ceram. Soc. 65 (10), C175 (1982). DOI: 10.1111/j.1151-2916.1982.tb10357.x.
  • G. R. Antis et al., A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurement, J. Am. Ceram. Soc. 64, 533 (1981). DOI: doi:.10.1111/j.1151-2916.1981.tb10320.x.
  • I. Ahmada et al., Investigation of yttria-doped alumina nanocomposites reinforced by multi walled carbon nanotubes, Ceram. Int. 40, 9327 (2014).
  • N. Meredith et al., Measurement of the microhardness and Young's modulus of human enamel and dentine using an indentation technique, Arch. Oral. Biol. 41 (6), 539 (1996)., DOI: 10.1016/0003-9969(96)00020-9.
  • R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta. Cryst. A. 32 (5), 751 (1976). DOI: 10.1107/S0567739476001551.
  • F. Moura et al., Ferroelectric and dielectric properties of vanadium-doped Ba(Ti0.90Zr0.10)O3 ceramics, J. Alloys Compd. 466 (1-2), L15 (2008)., DOI: 10.1016/j.jallcom.2007.11.057.
  • P. Jarupoom et al., High magnetic and ferroelectric properties of BZT-LSM multiferroic composites at room temperature, Ceram. Int. 44 (8), 8768 (2018).Get rights and content. DOI: 10.1016/j.ceramint.2018.02.006.
  • C. Kruea-In, S. Inthong, and W. Leenakul, Effects of NiO nanoparticles on physical and mechanical properties of BNKT lead-free ceramics, Amm. 866, 282 (2017).www.scientific.net/AMM.866.282. DOI: 10.4028/.
  • M. Kato, Hall-Petch relationship and dislocation model for deformation of ultrafine-grained and nanocrystalline metals, Mater. Trans. 55 (1), 19 (2014). DOI: 10.2320/matertrans.MA201310.
  • F. Gutierrez-Mora et al., Indentation hardness of biomorphic SiC, Int. J. Refract. Met. Hard Mater. 23 (4-6), 369 (2005)., DOI: 10.1016/j.ijrmhm.2005.05.020.
  • T. P. Hoepfner, and E. D. Case, The influence of the microstructure on the hardness of sintered hydroxyapatite, Ceram. Int. 29 (6), 699 (2003). DOI: 10.1016/S0272-8842(02)00220-1.
  • S. Manotham et al., Large electric field-induced strain and large improvement in energy density of bismuth sodium potassium titanate-based piezoelectric ceramics, J. Alloys Compd. 739, 457 (2018). DOI: 10.1016/j.jallcom.2017.12.175.
  • S. Eitssayeam et al., Effect of the solid-state synthesis parameters on the physical and electronic properties of perovskite-type Ba(Fe,Nb)0.5O3 ceramics, Curr. Appl. Phys. 9, 993 (2009).
  • B. P. Kumar, H. H. Kumar, and D. K. Kharat, Effect of porosity on dielectric properties and microstructure of porous PZT ceramics, Mater. Sci. Eng. B. 127 (2-3), 130 (2006). DOI: 10.1016/j.mseb.2005.10.003.
  • P. Butnoi et al., High thermal stability of energy storage density and large strain improvement of lead-free Bi0.5(Na0.40K0.10)TiO3 piezoelectric ceramics doped with La and Zr, J. Euro. Ceram. Soc. 38 (11), 3822 (2018)., DOI: 10.1016/j.jeurceramsoc.2018.04.024.
  • J. Hao et al., Correlation between the microstructure and electrical properties in high-performance (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoelectric ceramics, J. Am. Ceram. Soc. 95 (6), 1998 (2012). DOI: 10.1111/j.1551-2916.2012.05146.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.