Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 214, 2021 - Issue 1
58
Views
1
CrossRef citations to date
0
Altmetric
Selected Papers of The Second Materials Research Society of Thailand International Conference (MRS-Thailand 2019)

The Effect of Cu2+ Substitution on the Properties of BNKLT Lead-Free Ceramics Fabricated by the Solid-State Combustion Technique

, , , &
Pages 46-55 | Received 19 Jul 2019, Accepted 02 Jul 2020, Published online: 16 Mar 2021

References

  • P. Muralt Trans, PZT thin films for microsensors and actuators: Where do we stand?, IEEE Trans Ultrason Ferroelectr Freq Control 47 (4), 903 (2000). DOI: 10.1109/58.852073.
  • C. A. Randall et al., High strain piezoelectric multilayer actuators - A material science and engineering challenge, J. Electroceram. 14 (3), 177 (2005). DOI: 10.1007/s10832-005-0956-5.
  • The European Parliament and the Council of the European Union, EU-Directive 2002/95/EC: Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (RoHS), Off. J. Eur. Union. 19, 46 (2003).
  • G. A. Smolenskii et al., New ferroelectrics of complex composition, Sov. Phys. Solid State 2, 2651 (1961).
  • T. Takenaka, K. Maruyama, and K. Sakata, (Bi1/2Na1/2)TiO3 -BaTiO3 system for lead-free piezoelectric ceramics, Jpn. J. Appl. Phys. 30 (Part 1, No. 9B), 2236 (1991). DOI: 10.1143/JJAP.30.2236.
  • T. Takenaka, and K. Sakata, Dielectric, piezoelectric and pyroelectric properties of (BiNa)1/2TiO3- based ceramics, Ferroelectrics 95 (1), 153 (1989). DOI: 10.1080/00150198908245194.
  • H. Nagata, and T. Takenaka, Lead-free piezoelectric ceramics of (Bi1/2Na1/2)TiO3-1/2(Bi2O3⋅Sc2O3) system, Jpn. J. Appl. Phys. 36 (Part 1, No. 9B), 6055 (1997). DOI: 10.1143/JJAP.36.6055.
  • Z. Yang et al., Structure, microstructure and electrical properties of (1-x-y)Bi0.5Na0.5TiO3-xBi0.5K0.5TiO3-yBi0.5Li0.5TiO3 lead-free piezoelectric ceramics, J. Alloy Compd. 480 (2), 246 (2009)., DOI: 10.1016/j.jallcom.2009.02.030.
  • R. Sumang et al., The influence of firing temperatures on the crystal structure, microstructure and dielectric properties of 0.68Bi0.5Na0.5TiO3-0.22Bi0.5K0.5TiO3-0.10Bi0.5Li0.5TiO3 ceramics prepared via the combustion technique, Ferroelectrics 490 (1), 51 (2016). DOI: 10.1080/00150193.2015.1071644.
  • M. Matsubara et al., Processing and piezoelectric properties of lead-free (K,Na) (Nb,Ta) O3 ceramics, J. American Ceramic Society 88 (5), 1190 (2005). DOI: 101111/j.1551-2916.2005.00229.x.
  • D. W. Kim, K. H. Ko, and K. S. Hong, Influence of copper (II) oxide additions to zinc niobate microwave ceramics on sintering temperature and dielectric properties, J. Am. Ceram. Soc 84 (6), 1286 (2004). DOI: 10.1111/j.1151-2916.2001.tb00830.x.
  • Y. C. Zhang et al., Microwave dielectric properties of CuO-V2O5-Bi2O3-doped ZnNb2O6 ceramics with low sintering temperature, J. Electroceram. 14 (1), 67 (2005). DOI: 10.1007/s10832-005-6586-0.
  • J. Lv, T. Karaki, and M. Adachi, Low-temperature sintering of (Bi,Na)0.83Ba0.17TiO3–0.2 wt% CuO piezoelectric ceramics from nanopowders, Jpn. J. Appl. Phys. 50 (1S2), 01BJ18 (2011). DOI: 10.1143/jjap.50.01bj18.
  • H. Y. Tian et al., The effects of CuO-doping on dielectric and piezoelectric properties of Bi0.5Na0.5TiO3–Ba(Zr,Ti)O3 lead-free ceramics, J. Mater. Sci. 42 (23), 9750 (2007). DOI: 10.1007/s10853-007-2005-z.
  • A. Herabut, and A. Safari, Processing and Electromechanical Properties of (Bi0.5Na0.5)(1 − 1.5x)LaxTiO3 Ceramics, J. American Ceramic Society 80 (11), 2954 (1997). DOI: 10.1111/j.1151-2916.1997.tb03219.x.
  • H. D. Li, C. D. Feng, and P. H. Xiang, Electrical properties of La3+ doped (Na0.5Bi0.5) 0.94Ba0.06TiO3 ceramics, Jpn. J. Appl. Phys. 42 (Part 1, No. 12), 7387 (2003). DOI: 10.1142/s0217979209049711.
  • H. D. Li, C. D. Feng, and W. L. Yao, Some effects of different additives on dielectric and piezoelectric properties of Bi1/2Na1/2TiO3-BaTiO3 morphotropic-phase-boundary composition, Mater Lett 58 (7-8), 1194 (2004). DOI: 10.1016/j.matlet.2003.08.034.
  • X. Y. Zhou et al., Piezoelectric properties of Mn-doped (Na0.5Bi0.5)0.92Ba0.08TiO3 ceramic, Mater Lett 59 (13), 1649 (2005). DOI: 10.1016/j.matlet.2005.01.034.
  • Powder Diffraction File No. 36-0340. 2000. Newton Square, PA: International Centre for Diffraction Data.
  • Powder Diffraction File No. 36-0339 2000. Newton Square, PA: International Centre for Diffraction Data.
  • H. Sun et al., Effects of CuO additive on structure and electrical properties of low-temperature sintered Ba0.98Ca0.02Zr0.02Ti0.98O3 lead-free ceramics, J. Ceram Inter 41 (1), 555 (2015)., DOI: 10.1016/j.ceramint.2014.08.104.
  • C. Kornphom, N. Vittayakorn, and T. Bongkarn, Lead-free piezoelectric ceramics based on (1-x)BNKLLT–xBCTZ binary solid solutions synthesized by the solid-state combustion technique, J. Mater. Sci. 51 (8), 4142 (2016). DOI: 10.1007/s10853-016-9737-6.
  • W. Jo et al., On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6mol% BaTiO3, J. Appl Phys 110 (7), 074106 (2011). DOI: 10.1063/1.3645054.
  • M. Vögler et al., Temperature-dependent volume fraction ofpolar nanoregions in lead-free (1-x)(Bi0.5Na0.5)TiO3-xBaTiO3 ceramics, Phys. Rev. B. 95 (2), 024104 (2017). RevB.95.024104. DOI: 10.1103/Phys.
  • X. Liu et al. , Origin of anomalous giant dielectric performance in novel perovskite: Bi(0.5-x)LaxNa(0.5-x)LixTi(1-y)MyO3 (M = Mg2+, Ga3+) +), Sci. Rep. 5, 12699 (2015). DOI: 10.1038/srep12699.
  • W. Cao et al., Defect dipole induced large recoverable strain and high energy-storage density in lead-free Na0.5Bi0.5TiO3-based systems, Appl. Phys. Lett. 108 (20), 202902 (2016). DOI: 10.1063/1.4950974.
  • X. Liu, H. Guo, and X. Tan, Evolution of structure and electrical properties with lanthanum content in [(Bi1/2Na1/2)0.95Ba0.05]1-xLaxTiO3 ceramics, J. Eur Ceram Soc 34 (12), 2997 (2014). DOI: 10.1016/j.jeurceramsoc.2014.03.017.
  • S. Kakroo et al., The effect of CuO and NiO doping on dielectric and ferroelectric properties of Na0.5Bi0.5TiO3 lead-free ceramics, Phase Transitions 89 (3), 211 (2016). DOI: 10.1080/01411594.2015.1063631.
  • H. S. Han et al. , Coexistence of ergodicity and nonergodicity in LaFeO3-modified Bi(1/2)(Na(0.78)K(0.22))(1/2)TiO3 relaxors, J Phys Condens Matter. 24 (36), 365901 (2012). DOI: 10.1088/0953-8984/24/36/365901.
  • R. A. Malik et al., Structural transition and giant strain induced by A- and B-site concurrent donor doping in Bi0.5(Na0.84K0.16)0.5TiO3–SrTiO3 ceramics, Mater Lett 143, 148 (2015). DOI: 10.1016/j.matlet.2014.12.104.
  • H. S. Han et al., Destabilization of ferroelectric order in bismuth perovskite ceramics by A-site vacancies, Mater Lett 70, 98 (2012). DOI: 10.1016/j.matlet.2011.11.068.
  • C. Zhou et al., Ferroelectric‐quasiferroelectric‐ergodic relaxor transition and multifunctional electrical properties in Bi0.5Na0.5TiO3‐based ceramics, J. Am. Ceram. Soc. 101 (4), 1554 (2018). DOI: 10.1111/jace.15308.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.