Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 214, 2021 - Issue 1
233
Views
5
CrossRef citations to date
0
Altmetric
Selected Papers of The Second Materials Research Society of Thailand International Conference (MRS-Thailand 2019)

Enhanced Energy-Storage Properties of Ta Modified BNT − BT − NN Lead-Free Ceramics

, , &
Pages 79-89 | Received 24 Jul 2019, Accepted 27 Jul 2020, Published online: 16 Mar 2021

References

  • B. Xiong et al., Structure, dielectric properties and temperature stability of BaTiO3–Bi(Mg1/2Ti1/2)O3 perovskite solid solutions, J. Am. Ceram. Soc. 94 (10), 3412 (2011)., DOI: 10.1111/j.1551-2916.2011.04519.x.
  • H. Ogihara, C. A. Randall, and S. Trolier‐McKinstry, High‐energy density capacitors utilizing 0.7BaTiO3–0.3BiScO3 ceramics, J. Am. Ceram. Soc. 92 (8), 1719 (2009). DOI: 10.1111/j.1551-2916.2009.03104.x.
  • N. Ortega et al., Relaxor-ferroelectric superlattices: High energy density capacitors, J. Phys. Condens. Matter 24 (44), 445901 (2012)., DOI: 10.1088/0953-8984/24/44/445901.
  • X. Hao, J. Zhai, and X. Yao, Improved energy storage performance and fatigue endurance of Sr‐doped PbZrO3 antiferroelectric thin films, J. Am. Ceram. Soc. 92 (5), 1133 (2009). DOI: 10.1111/j.1551-2916.2009.03015.x.
  • J. Wang et al., High energy storage density performance of Ba, Sr-modified lead lanthanum zirconate titanate stannate antiferroelectric ceramics, Mater. Res. Bull. 48 (10), 3847 (2013)., DOI: 10.1016/j.materresbull.2013.05.083.
  • M. Sharifzadeh Mirshekarloo, K. Yao, and T. Sritharan, Large strain and high energy storage density in orthorhombic perovskite (Pb0.97La0.02)(Zr1−x−ySnxTiy)O3 antiferroelectric thin films, Appl. Phys. Lett. 97 (14), 142902 (2010). DOI: 10.1063/1.3497193.
  • Y. Wang et al., Fabrication and energy-storage performance of (Pb, La)(Zr, Ti)O3 antiferroelectric thick films derived from polyvinylpyrrolidone-modified chemical solution, J. Appl. Phys. 112 (3), 034105 (2012)., DOI: 10.1063/1.4742128.
  • Z. Hu et al., Temperature-dependent energy storage properties of antiferroelectric Pb0.96La0.04Zr0.98Ti0.02O3 thin films, Appl. Phys. Lett. 104 (26), 263902 (2014)., DOI: 10.1063/1.4887066.
  • R. Directive, Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment, Off. J. Eur. Union 13, L37 (2003).
  • L. Zhang et al., Influence of BaSnO3 additive on the energy storage properties of Na0.5Bi0.5TiO3-based relaxor ferroelectrics, J. Eur. Ceram. Soc. 38 (5), 2304 (2018)., DOI: 10.1016/j.jeurceramsoc.2017.11.053.
  • F. Li et al., Huge strain and energy storage density of A-site La3+ donor doped (Bi0.5Na0.5)0.94Ba0.06TiO3 ceramics, Ceram. Int. 43 (1), 106 (2017). DOI: 10.1016/j.ceramint.2016.09.117.
  • W. Ma et al., Enhanced energy-storage performance with excellent stability under low electric fields in BNT–ST relaxor ferroelectric ceramics, J. Mater. Chem. C. 7 (2), 281 (2019)., DOI: 10.1039/C8TC04447C.
  • Y. Hiruma, H. Nagata, and T. Takenaka, Phase diagrams and electrical properties of (Bi1/2 Na1/2)TiO3-based solid solutions, J. Appl. Phys. 104 (12), 124106 (2008). DOI: 10.1063/1.3043588.
  • T. Takenaka, K. Maruyama, and K. Sakata, (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics, Jpn. J. Appl. Phys. 30 (Part 1, No. 9B), 2236 (1991). DOI: 10.1143/JJAP.30.2236.
  • W. Zhao et al., Morphotropic phase boundary study of the BNT-BKT lead-free piezoelectric ceramics, Key Eng. Mater 368, 1908 (2008). DOI: 10.4028/www.scientific.net/KEM.368-372.1908.
  • A. Sasaki et al., Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3 systems, Jpn. J. Appl. Phys. 38 (Part 1, No. 9B), 5564 (1999)., DOI: 10.1143/JJAP.38.5564.
  • H. Nagata, N. Koizumi, and T. Takenaka, Lead-free piezoelectric ceramics of (Bi1/2Na1/2) TiO3-BiFeO3 system, Key Eng. Mater 169, 37 (1999).
  • W. Jo et al., On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6 mol%BaTiO3, J. Appl. Phys. 110 (7), 074106 (2011)., DOI: 10.1063/1.3645054.
  • J. Rödel et al., Perspective on the Development of Lead‐free Piezoceramics, J. Am. Ceram. Soc. 92 (6), 1153 (2009)., DOI: 10.1111/j.1551-2916.2009.03061.x.
  • Q. Li et al., Enhanced energy-storage performance and dielectric characterization of 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 modified by CaZrO3, J. Alloys Compd. 663, 701 (2016). DOI: 10.1016/j.jallcom.2015.12.194.
  • B. Wang et al., Energy-storage properties of (1− x)Bi0. 47Na0.47Ba0.06TiO3–xKNbO3 lead-free ceramics, J. Alloys Compd 585, 14 (2014). DOI: 10.1016/j.jallcom.2013.09.052.
  • Q. Xu et al., Dielectric behavior and impedance spectroscopy in lead-free BNT–BT–NBN perovskite ceramics for energy storage, Ceram. Int 42 (8), 9728 (2016)., DOI: 10.1016/j.ceramint.2016.03.062.
  • Q. Xu et al., Enhanced energy storage properties of NaNbO3 modified Bi0.5Na0.5TiO3 based ceramics, J. Eur. Ceram. Soc. 35 (2), 545 (2015). DOI: 10.1016/j.jeurceramsoc.2014.09.003.
  • V.-Q. Nguyen et al., Strain enhancement in Bi1/2(Na0.82K0.18)1/2TiO3 lead-free electromechanical ceramics by co-doping with Li and Ta, J. Alloys Compd. 511 (1), 237 (2012)., DOI: 10.1016/j.jallcom.2011.09.043.
  • C. Ma et al., Creation and destruction of morphotropic phase boundaries through electrical poling: A case study of lead-free (Bi(1/2)Na(1/2))TiO3-BaTiO3 piezoelectrics, Phys. Rev. Lett. 109, 107602 (2012). DOI: 10.1103/PhysRevLett.109.107602.
  • G. Viola et al., Lithium-induced phase transitions in lead-free Bi0.5Na0.5TiO3 based ceramics, J. Phys. Chem. C. 118 (16), 8564 (2014)., DOI: 10.1021/jp500609h.
  • R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. A. 32 (5), 751 (1976). DOI: 10.1107/S0567739476001551.
  • Y. Xu et al., Antiferroelectricity in tantalum doped (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics, Ceram. Int. 42 (3), 4313 (2016)., DOI: 10.1016/j.ceramint.2015.11.109.
  • R. Zuo et al., Tantalum doped 0.94 Bi0.5Na0.5TiO3–0.06BaTiO3 piezoelectric ceramics, J. Eur. Ceram. Soc. 28 (4), 871 (2008)., DOI: 10.1016/j.jeurceramsoc.2007.08.011.
  • M. Matsubara, K. Kikuta, and S. Hirano, Piezoelectric properties of (K0.5Na0.5)(Nb1−xTax) O3− K5.4CuTa10O29 ceramics, J. Appl. Phys. 97 (11), 114105 (2005). DOI: 10.1063/1.1926396.
  • F. Wang et al., Large strain response in the ternary Bi0.5Na0.5TiO3–BaTiO3–SrTiO3 solid solutions, J. Am. Ceram. Soc. 95 (6), 1955 (2012)., DOI: 10.1111/j.1551-2916.2012.05119.x.
  • Q. Xu et al., Structure and electrical properties of lead-free Bi 0.5 Na 0.5 TiO 3-based ceramics for energy-storage applications, RSC Adv. 6 (64), 59280 (2016). DOI: 10.1039/C6RA11744A.
  • D. Yin et al., Electrical properties and relaxor phase evolution of Li‐modified BNT‐BKT‐BT lead‐free ceramics, J. Am. Ceram. Soc. 99 (7), 2354 (2016)., DOI: 10.1111/jace.14247.
  • R.-F. Ge et al., Large electro-strain response of La3+ and Nb5+ co-doped ternary 0.85Bi0.5Na0.5TiO3-0.11Bi0.5K0.5TiO3-0.04BaTiO3 lead-free piezoelectric ceramics, J. Alloys Compd 724, 1000 (2017). DOI: 10.1016/j.jallcom.2017.07.086.
  • Q. Xu et al., Ultra‐Wide Temperature Stable Dielectrics Based on Bi0.5Na0.5TiO3–NaNbO3 System, J. Am. Ceram. Soc. 98 (10), 3119 (2015). DOI: 10.1111/jace.13693.
  • Q. Zhang et al., Improved energy storage density in barium strontium titanate by addition of BaO–SiO2–B2O3 glass, J. Am. Ceram. Soc 92 (8), 1871 (2009). DOI: 10.1111/j.1551-2916.2009.03109.x.
  • X. Chen et al., Charge-discharge properties of lead zirconate stannate titanate ceramics, J. Appl. Phys. 106 (3), 034105 (2009). DOI: 10.1063/1.3187778.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.