Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 214, 2021 - Issue 1
76
Views
4
CrossRef citations to date
0
Altmetric
Selected Papers of The Second Materials Research Society of Thailand International Conference (MRS-Thailand 2019)

Effect of Ultrasonic Irradiation Time on Physical Properties and Photocatalytic Performance of BiVO4 Nanoparticles Prepared via Sonochemical Process

, , &
Pages 123-132 | Received 26 Jul 2019, Accepted 03 Jul 2020, Published online: 16 Mar 2021

References

  • S. Chala et al., Enhanced visible-light-response photocatalytic degradation of methylene blue on Fe-loaded BiVO4 photocatalyst, J. Alloy Compd. 597, 129 (2014). DOI: 10.1016/j.jallcom.2014.01.130.
  • A. Tayyebi, T. Soltani, and B. Lee, Effect of pH on photocatalytic and photoelectrochemical (PEC) properties of monoclinic bismuth vanadate, J. Colloid Interface Sci. 534, 37 (2019). DOI: 10.1016/j.jcis.2018.08.095.
  • H. L. Tan, R. Amal, and Y. H. Ng, Alternative strategies in improving the photocatalytic and photoelectrochemical activities of visible light-driven BiVO4: a review, J. Mater. Chem. A. 5 (32), 16498 (2017). DOI: 10.1039/C7TA04441K.
  • J. Yu and A. Kudo, Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4, Adv. Funct. Mater. 16 (16), 2163 (2006). DOI: 10.1002/adfm.200500799.
  • A. M. Cruz and U. M. G. Pérez, Photocatalytic properties of BiVO4 prepared by the co-precipitation method: degradation of rhodamine B and possible reaction mechanisms under visible irradiation, Mat. Res. Bull. 45 (2), 135 (2010). DOI: 10.1016/j.materresbull.2009.09.029.
  • Y. M. Hunge et al., Sonochemical synthesis of CZTS photocatalyst for photocatalytic degradation of phthalic acid, Ultrason. Sonochem. 56, 284 (2019). DOI: 10.1016/j.ultsonch.2019.04.003.
  • C. Wattanawikkam and W. Pecharapa, Sonochemical synthesis, characterization, and photocatalytic activity of perovskite ZnTiO3 nanopowders, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63 (10), 1663 (2016). DOI: 10.1109/TUFFC.2016.2593002.
  • P. Intaphong et al., Sonochemical synthesis and characterization of BiOI nanoplates for using as visible-light-driven photocatalyst, Mater. Lett. 213, 88 (2018). DOI: 10.1016/j.matlet.2017.11.014.
  • J. P. Porres et al., Phase transition systematics in BiVO4 by means of high-pressure–high-temperature Raman experiments, Phys. Rev. B 98, 214109 (2018). DOI: 10.1103/PhysRevB.98.214109.
  • O. Joubert, A. Jouanneaux, and M. Ganne, Crystal structure of low temperature form of Bi6V3O16Rietveld refinement of synchrotron radiation powder diffraction data: a new mixed valence Aurivillius phase, Nucl. Instr. Methods Phy. Res. B 97 (1-4), 119 (1995). DOI: 10.1016/0168-583X(94)00383-1.
  • A. Zhang et al., Effects of pH on hydrothermal synthesis and characterization of visible-light-driven BiVO4 photocatalyst, J. Mol.Catal. A. Chem. 304 (1-2), 28 (2009)., DOI: 10.1016/j.molcata.2009.01.019.
  • S. R. M. Thalluri et al., Insights from crystal size and band gap on the catalytic activity of monoclinic BiVO4, Int. J. Comput. Eng. Appl. 4 (5), 305 (2013). DOI: 10.7763/IJCEA.2013.V4.315.
  • F. D. Hardcastle and I. E. Wachs, Determination of vanadium-oxygen bond distances and bond orders by Raman spectroscopy, J. Phys. Chem. 95 (13), 5031 (1991). DOI: 10.1021/j100166a025.
  • Y. Astuti et al., Synthesis of α-bismuth oxide using solution combustion method and its photocatalytic properties, IOP Conf. Ser. Mater. Sci. Eng. 107, 012006 (2016). DOI: 10.1088/1757-899X/107/1/012006.
  • Y. Shen et al., The synthesis of bismuth vanadate powders and their photocatalytic properties under visible light irradiation, J. Alloy Compd. 496 (1-2), 287 (2010). DOI: 10.1016/j.jallcom.2010.01.144.
  • L. Zhou et al., Single-crystalline BiVO4 microtubes with square cross-sections: microstructure, growth mechanism, and photocatalytic property, J. Phys. Chem. C. 111 (37), 13659 (2007). DOI: 10.1021/jp065155t.
  • P. Dong et al., Template-free synthesis of monoclinic BiVO4 with porous structure and its high photocatalytic activity, Materials 9 (8), 685 (2016). DOI: 10.3390/ma9080685.
  • A. Kudo, K. Omori, and H. Kato, A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties, J. Am. Chem. Soc. 121 (49), 11459 (1999). DOI: 10.1021/ja992541y.
  • S. Tokunaga, H. Kato, and A. Kudo, Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties, Chem. Mater. 13 (12), 4624 (2001). DOI: 10.1021/cm0103390.
  • X. Zhang et al., Selective synthesis and visible-light photocatalytic activities of BiVO4 with different crystalline phases, Mater. Chem. Phys. 103 (1), 162 (2007). DOI: 10.1016/j.matchemphys.2007.02.008.
  • W. Yin et al., CTAB-assisted synthesis of monoclinic BiVO4 photocatalyst and its highly efficient degradation of organic dye under visible-light irradiation, J. Hazard. Mater. 173 (1-3), 194 (2010). DOI: 10.1016/j.jhazmat.2009.08.068.
  • H. Jiang et al., Enhanced visible light photocatalysis of Bi2O3 upon fluorination, J. Phys. Chem. C. 117 (39), 20029 (2013). DOI: 10.1021/jp406834d.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.