Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 213, 2021 - Issue 1
85
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Monte Carlo Study of Magnetization Plateaus of a Bi-Layer Graphyne-Like Structure

, , , &
Pages 146-157 | Received 26 Aug 2020, Accepted 02 Dec 2020, Published online: 28 Feb 2021

References

  • A. K. Geim, Graphene: status and prospects, Science 324 (5934), 1530 (2009). DOI: 10.1126/science.1158877.
  • L. Feng, and Z. Liu, Graphene in biomedicine: opportunities and challenges, Nanomedicine 6 (2), 317 (2011). DOI: 10.2217/nnm.10.158.
  • V. C. Sanchez et al., Biological interactions of graphene-family nanomaterials: an interdisciplinary review, Chem. Res. Toxicol. 25 (1), 15 (2012). DOI: 10.1021/tx200339h.
  • A. Ivanovskii, Graphynes and graphdyines, Prog. Solid State Chem 41 (1-2), 1 (2013). DOI: 10.1016/j.progsolidstchem.2012.12.001.
  • Y. Li et al., Graphdiyne and graphyne: from theoretical predictions to practical construction, Chem. Soc. Rev. 43 (8), 2572 (2014). DOI: 10.1039/c3cs60388a.
  • H. W. Kroto et al., C60: buckminsterfullerene, Nature 318 (6042), 162 (1985). DOI: 10.1038/318162a0.
  • S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (6348), 56 (1991). DOI: 10.1038/354056a0.
  • K. S. Novoselov et al., Electric field effect in atomically thin carbon films, Science 306 (5696), 666 (2004). DOI: 10.1126/science.1102896.
  • R. H. Baughman, H. Eckhardt, and M. Kertesz, Structure‐property predictions for new planar forms of carbon: layered phases containing sp2 and sp atoms, J. Chem. Phys. 87 (11), 6687 (1987). DOI: 10.1063/1.453405.
  • H. Jafarzadeh, S. Zahedi, and A. H. Bayani, Electronic and optical properties of 14,14,18 graphyne as an anti-visible ray coating, Optik 203, 163905 (2020). DOI: 10.1016/j.ijleo.2019.163905.
  • S. N. Jafari, Y. Hakimi, and S. Rouhi, Molecular dynamics investigation of the mechanical properties of two different graphyne allotropes: α-graphyne and α2-graphyne, Phys. E 119, 114022 (2020). DOI: 10.1016/j.physe.2020.114022.
  • Y. W. Lin, and X. F. Guo, Chemical modification of graphene and its applications, Acta Chim. Sin. 72 (3), 277 (2014). DOI: 10.6023/A13080908.
  • Y. Wang et al., Tuning the electronic and magnetic properties of graphyne by hydrogenation, Appl. Surf. Sci. 452, 181 (2018). DOI: 10.1016/j.apsusc.2018.05.054.
  • D. Zhang et al., Electronic and magnetic properties of zigzag α-graphyne nanoribbons with edge fluorine modification, J. Magn. Magn. Mater. 498, 166194 (2020). DOI: 10.1016/j.jmmm.2019.166194.
  • B. Kang, H. Ai, and J. Y. Lee, Single-atom vacancy induced changes in electronic and magnetic properties of graphyne, Carbon 116, 113 (2017). DOI: 10.1016/j.carbon.2017.01.068.
  • Z. Fadil et al., Magnetization and susceptibility behaviors in a bi-layer graphyne structure: a Monte Carlo study, Phys. B 578, 411852 (2020). DOI: 10.1016/j.physb.2019.411852.
  • O. Iglesias, and A. Labarta, Finite-size and surface effects in maghemite nanoparticles: Monte Carlo simulations, Phys. Rev. B. 63 (18), 184416 (2001). DOI: 10.1103/PhysRevB.63.184416.
  • N. Maaouni et al., Magnetic and thermal properties of a core-shell borophene structure: Monte Carlo study, Phys. B 566, 63 (2019). DOI: 10.1016/j.physb.2019.05.002.
  • Z. Fadil et al., Dilution effects on compensation temperature in nano-trilayer graphene structure: Monte Carlo study, Phys. B 564, 104 (2019). DOI: 10.1016/j.physb.2019.03.006.
  • O. Iglesias, X. Batlle, and A. Labarta, Microscopic origin of exchange bias in core/shell nanoparticles, Phys. Rev. B. 72 (21), 212401 (2005). DOI: 10.1103/PhysRevB.72.212401.
  • Z. Fadil et al., Dilution effects on compensation temperature in borophene core-shell structure: Monte Carlo simulations, Solid State Commun. 316-317, 113944 (2020). DOI: 10.1016/j.ssc.2020.113944.
  • Y. Yuksel, E. Aydiner, and H. Polat, Monte Carlo study of magnetization plateaus of a bi-layer graphyne-like structure, J. Magn. Magn. Mater. 323, 3168 (2011).
  • W. Jiang, Y.-Y. Yang, and A.-B. Guo, Study on magnetic properties of a nano-graphene bilayer, Carbon 95, 190 (2015). DOI: 10.1016/j.carbon.2015.07.097.
  • M. Qajjour et al., Dilution effect on the compensation temperature in a honeycomb nano-lattice: Monte Carlo study, Chin. J. Phys. 63, 36 (2020). DOI: 10.1016/j.cjph.2019.09.038.
  • Z. Fadil et al., Blume-Capel model of a nano-Stanene like structure with RKKY interactions: Monte Carlo simulations, Phase Transit. 93 (6), 561 (2020). DOI: 10.1080/01411594.2020.1758320.
  • W. Jiang, and G. Z. Wei, Effects of biaxial crystal-field on a ferrimagnetic bilayer system, Phys. B 362 (1-4), 236 (2005). DOI: 10.1016/j.physb.2005.02.015.
  • W. Wang et al., Monte Carlo study of magnetization plateaus in a zigzag graphene nanoribbon structure, Carbon 120, 313 (2017). DOI: 10.1016/j.carbon.2017.05.052.
  • D. Lv et al., Monte Carlo study of magnetization plateaus and thermodynamic properties of a nano-graphene with a sandwich-like structure in a longitudinal magnetic field, Phys. E 116, 113721 (2020). DOI: 10.1016/j.physe.2019.113721.
  • J. L. Bi, W. Wang, and Q. Li, Monte Carlo study of a ferrimagnetic mixed-spin (2, 5/2) system with the nearest and next-nearest neighbors exchange couplings, Superlattices Microstruct. 107, 104 (2017). DOI: 10.1016/j.spmi.2017.04.004.
  • W. Wang et al., Monte Carlo study of the surface effect on the compensation and critical behaviour in a molecular-based magnetic film AFeIIFeIII(C2O4)3, J. Phys. D. Appl. Phys. 45 (47), 475002 (2012). DOI: 10.1088/0022-3727/45/47/475002.
  • W. Wang et al., Monte Carlo simulation of magnetic properties of a mixed spin-2 and spin-5/2 ferrimagnetic Ising system in a longitudinal magnetic field, J. Magn. Magn. Mater. 385, 16 (2015). DOI: 10.1016/j.jmmm.2015.02.070.
  • M. Ertaş, and M. Keskin, Dynamic magnetic behavior of the mixed-spin bilayer system in an oscillating field within the mean-field theory, Phys. Lett. A. 376 (36), 2455 (2012). DOI: 10.1016/j.physleta.2012.06.012.
  • M. Ertaş, M. Keskin, and B. Deviren, Dynamic magnetic properties in the kinetic mixed spin-2 and spin-5/2 Ising model under a time-dependent magnetic field, Phys. A 391 (4), 1038 (2012). DOI: 10.1016/j.physa.2011.10.030.
  • C. L. Zou et al., Magnetization, the susceptibilities and the hysteresis loops of a borophene structure, Phys. E 104, 138 (2018). DOI: 10.1016/j.physe.2018.07.028.
  • X. S. Wang et al., Unique magnetic and thermodynamic properties of a zigzag graphene nanoribbon, Phys. A 527, 121356 (2019). DOI: 10.1016/j.physa.2019.121356.
  • Z. Fadil et al., Blume-Capel model of a bi-layer graphyne structure with RKKY interactions: Monte Carlo simulations, J. Magn. Magn. Mater. 491, 165559 (2019). DOI: 10.1016/j.jmmm.2019.165559.
  • N. Si et al., Magnetic and thermodynamics properties graphene monolayer with defects, Phys. A 510, 641 (2018). DOI: 10.1016/j.physa.2018.07.018.
  • K. L. Shi, and W. Jiang, Monte Carlo study of magnetic and thermodynamic properties of a 2D boron clusters in a magnetic field, Phys. E 101, 94 (2018). DOI: 10.1016/j.physe.2018.03.022.
  • Z. Fadil et al., Dielectric properties of a monolayer nano-graphyne structure: Monte Carlo simulations, Superlattices Microstruct. 135, 106285 (2019). DOI: 10.1016/j.spmi.2019.106285.
  • W. Jiang et al., Magnetization plateaus and the susceptibilities of a nano-graphene sandwich-like structure, Carbon 110, 41 (2016). DOI: 10.1016/j.carbon.2016.09.007.
  • Z. Fadil et al., Magnetization and compensation behaviors in a mixed spins (7/2, 1) anti-ferrimagnetic ovalene nano-structure, Superlattices Microstruct. 134, 106224 (2019). DOI: 10.1016/j.spmi.2019.106224.
  • Z. Fadil et al., Magnetic properties of naphthalene-like nano-structure with RKKY interactions: Monte Carlo simulations, Chin. J. Phys. 64, 295 (2020). DOI: 10.1016/j.cjph.2020.01.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.