Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 213, 2021 - Issue 1
74
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhanced Dielectric, Piezoelectric, and Mechanical Performances of Barium Strontium Titanate-Modified (Bi0.487Na0.487La0.017)TiO3 Lead-Free Ceramics

&
Pages 209-220 | Received 20 Feb 2020, Accepted 08 Dec 2020, Published online: 28 Feb 2021

References

  • X. Ren et al., The large electro-strain in BNKT-BST-100xTa lead-free ceramics, Ceram. Int. 46 (2), 1876 (2020). DOI: 10.1016/j.ceramint.2019.09.164.
  • Z. T. Li et al., Ferroelectric and piezoelectric properties of 0.82(Bi0.5Na0.5)TiO3-(0.18-x)BaTiO3-x(Bi0.5Na0.5)(Mn1/3Nb2/3)O3 lead-free ceramics, J. Alloys Compd. 774, 948 (2019). DOI: 10.1016/j.jallcom.2018.09.396.
  • S. Pang et al., Low electric field-induced strain and large improvement in energy density of (Lu0.5Nb0.5)4+ complex-ions doped BNT-BT ceramics, Appl. Phys. A 125 (2), 119 (2019). DOI: 10.1007/s00339-019-2410-6.
  • A. Zeb et al., Structure-property relationships in the lead-free piezoceramic system K0.5Bi0.5TiO3-BiMg0.5Ti0.5O3, Acta. Mater. 168, 100 (2019). DOI: 10.1016/j.actamat.2019.02.011.
  • R. Dou et al., The modification of (Nd0.5Ta0.5)4+ complex-ions on structure and electrical properties of Bi0.5Na0.5TiO3-BaTiO3 ceramics, Mater. Res. 22, 1 (2019).
  • A. Bootchanont et al., Local structure and evolution of phase transformation in Bi0.4871Na0.4871La0.0172TiO3-BaTiO3 materials, Ceram. Int. 46 (5), 5665 (2020). DOI: 10.1016/j.ceramint.2019.11.013.
  • A. Herabut and A. Safari, Processing and electromechanical properties of (Bi0.5Na0.5)(11.5x)LaxTiO3 ceramics, J. Am. Ceram. Soc. 80 (11), 2954 (1997). DOI: 10.1111/j.1151-2916.1997.tb03219.x.
  • C. Kornphom, A. Laowanidwatana, and T. Bongkarn, The effects of sintering temperature and content of x on phase formation, microstructure and dielectric properties of (1-x)(Bi0.4871Na0.4871La0.0172TiO3)-x(BaZr0.05Ti0.95O3) ceramics prepared via the combustion technique, Ceram. Int. 39, S421 (2013). DOI: 10.1016/j.ceramint.2012.10.106.
  • N. Pisitpipathsin et al., Dielectric properties of lead free solid solution of Bi0.489Na0.487La0.017TiO3 and BaTiO3 addition, Phase Transitions 83 (10–11), 875 (2010)., DOI: 10.1080/01411594.2010.509165.
  • P. Jarupoom et al., Development of electrical properties in lead-free bismuth sodium lanthanum titanate-barium titanate ceramic near the morphotropic phase boundary, Curr. Appl. Phys. 8 (3–4), 253 (2008). DOI: 10.1016/j.cap.2007.10.010.
  • A. S. Attar, E. S. Sichani, and S. Sharaf, Structural and dielectric properties of Bi-doped barium strontium titanate nanopowders synthesized by sol-gel method, J. Mater. Res. Technol. 6, 108 (2017).
  • A. Khare and N. Chauhan, The effect of Mg doping on structural and luminescent properties of barium strontium titanate (BST), Physics Procedia 76, 86 (2015). DOI: 10.1016/j.phpro.2015.10.016.
  • Y. Wang et al., Enhanced energy storage density of Ba0.4Sr0.6TiO3 ceramics with additive of Bi2O3-B2O3-ZnO glass, Mater. Lett. 201, 203 (2017). DOI: 10.1016/j.matlet.2017.05.007.
  • J. Xu et al., Dielectric properties of Y-doped Ba1xSrxTiO3 ceramics, Opt. Appl. 1, 255 (2010).
  • P. Jaita et al., Lead-free (Ba0.70Sr0.30)TiO3-modified Bi0.5(Na0.80K0.20)0.5TiO3 ceramics with large electric field-induced strains, J. Am. Ceram. Soc. 99 (5), 1615 (2016). DOI: 10.1111/jace.14136.
  • R. S. Liu et al., Crystal and electronic structures of (Ba, Sr)TiO3, Mater. Lett 37 (4–5), 285 (1998). DOI: 10.1016/S0167-577X(98)00107-4.
  • D. B. Marshall, T. Noma, and A. G. Evans, A simple method for determining elasticmodulus to hardness ratios using Knoop indentation measurements, J. Am. Ceram. Soc. 65 (10), C175 (1982). DOI: 10.1111/j.1151-2916.1982.tb10357.x.
  • N. Meredith et al., Measurement of the microhardness and young’s modulus of human enamel and dentine using an indentation technique, Archs. Oral Biol. 41 (6), 539 (1996). DOI: 10.1016/0003-9969(96)00020-9.
  • B. Liu et al., Simultaneously enhanced piezoelectric response and piezoelectric voltage coefficient in textured KNN-based ceramics, J. Am. Ceram. Soc. 101 (1), 265 (2018). DOI: 10.1111/jace.15175.
  • D. J. Shin, J. Kim, and J. H. Koh, Piezoelectric properties of (1-x)BZT-xBCT system for energy harvesting applications, J. Eur. Ceram. Soc. 38 (13), 4395 (2018). DOI: 10.1016/j.jeurceramsoc.2018.05.022.
  • R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. A 32 (5), 751 (1976). DOI: 10.1107/S0567739476001551.
  • W. D. Callister, Materials Science and Engineering: An Introduction (John Wiley & Sons Inc., New York, 2003).
  • Y. M. Chiang, D. P. Birnie, III, and W. D. Kingery, Physical Ceramics: Principles for Ceramics Science and Engineering (John Wiley & Sons, Inc., New York, 1997).
  • R. Morrell, Guidelines for conducting hardness tests on advanced ceramics materials, VAMAS Technical Report 8, National Physical Laboratory, Teddington, Middlesex, TW11 0LW, UK, 1990.
  • K. Strecker et al., Fracture toughness measurements of LPS-SiC: A comparison of the indentation technique and the SEVNB method, Mat. Res. 8 (2), 121 (2005). DOI: 10.1590/S1516-14392005000200004.
  • C. Kruea-In, S. Inthong, and W. Leenakul, Effects of NiO nanoparticles on physical and mechanical properties of BNKT lead-free ceramics, Appl. Mech. Mater. 866, 282 (2017). DOI: 10.4028/www.scientific.net/AMM.866.282.
  • M. Kato, Hall-Petch relationship and dislocation model for deformation of ultrafine-grained and nanocrystalline metals, Mater. Trans. 55 (1), 19 (2014). DOI: 10.2320/matertrans.MA201310.
  • S. N. Naik and S. M. Walley, The Hall-Petch and inverse Hall-Petch relations and the hardness of nanocrystalline metals, J. Mater. Sci. 55 (7), 2661 (2020). DOI: 10.1007/s10853-019-04160-w.
  • N. B. Domingues et al., Comparison of the indentation strength and single-edge-v-notched beam methods for dental ceramic fracture toughness testing, Braz. J. Oral Sci. 15 (2), 109 (2017). DOI: 10.20396/bjos.v15i2.8648760.
  • A. J. Moulson and J. M. Herbert, Electroceramics Materials, Properties, Applications, 2nd ed. (J. Wiley and Sons, New York, 2003).
  • X. W. Wang et al., Enhanced energy storage performance of Ba0.94(Bi0.5K0.5)0.06Ti0.85Zr0.15O3 relaxor ceramics by two-step sintering method, Mater. Res. Bull. 114, 74 (2019). DOI: 10.1016/j.materresbull.2019.02.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.