Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 225, 2022 - Issue 1
50
Views
0
CrossRef citations to date
0
Altmetric
Regular Papers

The Influence of Graphene Oxide Sheets on TiO2 Nanocomposites Thin Films Prepared by Chemical Deposition and Microwave Radiation

, &
Pages 324-333 | Received 02 Jun 2021, Accepted 29 Nov 2021, Published online: 13 May 2022

References

  • C. Jianli et al., Size distribution-controlled preparation of graphene oxide nanosheets with different C/O ratios, Mats. Chem. Phys. 139, 8 (2013).
  • Y. Lin et al., Enhanced chemical interaction between TiO2 and graphene oxide for photocatalytic decolorization of methylene blue, J. Chem. Eng. 193-194, 203 (2012).
  • G. H. Won et al., Agent-free synthesis of graphene oxide/transition metal oxide composites and its application for hydrogen storage, Inter. J. Hydro. Energy 37 (9), 7594 (2012). DOI: https://doi.org/10.1016/j.ijhydene.2012.02.010.
  • Y. Jintao et al., Preparation, characterization, and supercritical carbon dioxide foaming of polystyrene/graphene oxide composites, J. Supercrit. Fluids 56, 201 (2011).
  • D. Jijun et al., A comparison study between ZnO nanorods coated with graphene oxide and reduced graphene oxide, J. Alloys Comp. 582, 29 (2014).
  • W. Dongting et al., Enhanced photoelectron catalytic activity of reduced graphene oxide/TiO2 composite films for dry degradation, J. Chem. Eng. 198-199, 547 (2012).
  • L. T. Lling et al., Reduced graphene oxide–TiO2 nanocomposite as a promising visible-light-active photocatalyst for the conversion of carbon dioxide, Nanoscale. Res. Lett. 465, 1 (2013).
  • S. Qing et al., Effect of the morphology of V2O5/TiO2 nanoheterostructures on the visible light photocatalytic activity, J. Phys. Chem. Solids 74 (10), 1475 (2013). DOI: https://doi.org/10.1016/j.jpcs.2013.05.009.
  • P. Xipeng et al., One-pot microwave-assisted combustion synthesis of graphene oxide-TiO2 hybrids for photodegradation of methyl orange, J. Alloys Comp. 551, 382 (2013).
  • N. P. Thuy-Duong et al., The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites, J. Chem. Eng. 170, 226 (2011).
  • H. Rasuli et al., Microwave-assisted exfoliation and tearing of graphene oxide in the presence of TiO2 nanoparticles, Resul. Phys. 18, 103200 (2020). DOI: https://doi.org/10.1016/j.rinp.2020.103200.
  • G. Jingjing et al. , Sonochemical synthesis of TiO(2 nanoparticles on graphene for use as photocatalyst, Ultrason. Sonochem. 18 (5), 1082 (2011). DOI: https://doi.org/10.1016/j.ultsonch.2011.03.021.
  • O. Akhavan, The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets, Carbon 48 (2), 509 (2010). DOI: https://doi.org/10.1016/j.carbon.2009.09.069.
  • D. Guixiang et al., One-step green synthesis of graphene-ZnO nanocomposites, Mats. Lett. 98, 168 (2013).
  • S. Vaclav et al., TiO2-graphene oxide nanocomposit as advanced photocatalytic materials, J. Chem. Central 41, 1 (2013).
  • R. K. Gupta, Z. A. Alahmed, and F. Yakuphanoglu, Graphene oxide based cost battery, Mats. Lett. 112, 75 (2013). DOI: https://doi.org/10.1016/j.matlet.2013.09.011.
  • S. Ghasemi et al., Synthesis and characterization of TiO2-graphene nanocomposites modified with noble metals as a photocatalyst for degradation of pollutants, Appl. Catal. A: General 462-463, 82 (2013). DOI: https://doi.org/10.1016/j.apcata.2013.04.029.
  • F. Yang et al. , Hydrothermal preparation and electrochemical sensing properties of TiO(2)-graphene nanocomposite, Colloids Surf. B Biointerfaces 83 (1), 78 (2011). DOI: https://doi.org/10.1016/j.colsurfb.2010.10.048.
  • D. Hou et al., Influence of order degree of coaly graphite on its structure chang during preparation of graphene oxide, J. Materiom. 6 (3), 628 (2020). DOI: https://doi.org/10.1016/j.jmat.2020.04.009.
  • S. Min et al., Preparation of graphene-TiO2 composite by hydrothermal method from peroxotitanium acid and its photocatalytic properties, Coll. Surf. A: Physicochem. Eng. Aspects. 405, 30 (2012). DOI: https://doi.org/10.1016/j.colsurfa.2012.04.031.
  • V. S. Channu, R. Bobba, and R. Holze, Graphite and graphene oxide electrodes for lithium ion batteries, Coll. Surf. A: Physicochem. Eng. Aspects. 436, 245 (2013). DOI: https://doi.org/10.1016/j.colsurfa.2013.06.018.
  • T. Feiyue et al., Fabrication of graphene from graphene oxide by ultrasonication with high Li storage capability, Powder Technol. 249, 146 (2013).
  • Z. Zhe et al., One-pot, solvothermal synthesis of TiO2-graphene composite nanosheets, J. Coll. Interfacce Sci. 386, 198 (2012).
  • A. S. Alshammari et al., Synthesis of titanium dioxide (TiO2) reduced graphene oxide (rGO) thin film composite by spray pyrolysis technique and its physical properties, Mater. Sci. Semicond. Process 116, 105140 (2020). DOI: https://doi.org/10.1016/j.mssp.2020.105140.
  • M. B. A. Muneer et al., Synthesis and catalytic activity of TiO2 nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation, Int. J. Electrochem. Sci. 7, 4871 (2012).
  • W. Feng, and Z. Kan, Reduced graphene oxide-TiO2 nanocomposite with high photocatalytic activity for the degradation of rhodamine B, J. Molec. Catal. A: Chem. 345, 101 (2011).
  • L. Dayu et al., One-step hydrothermal synthesis of anatase TiO2/reduced graphene oxide nanocomposites with enhanced photocatalytic activity, J. Alloys Comp. 582, 236 (2014). DOI: https://doi.org/10.1016/j.jallcom.2013.08.062.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.