Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 238, 2023 - Issue 1
125
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Simple Method for Enhancing Performance of the Bacterial Cellulose-Based Triboelectric Nanogenerator by Adding Conductive Interlayer

, , , , &
Pages 1-12 | Received 15 Jan 2023, Accepted 30 Mar 2023, Published online: 29 Sep 2023

References

  • S. A. Lone et al., Recent advancements for improving the performance of triboelectric nanogenerator devices, Nano Energy 99, 107318 (2022). DOI: 10.1016/j.nanoen.2022.107318.
  • H. Askari et al., Intelligent systems using triboelectric, piezoelectric, and pyroelectric nanogenerators, Mater. Today 52, 188 (2022). DOI: 10.1016/j.mattod.2021.11.027.
  • S. Sriphan, and N. Vittayakorn, Hybrid piezoelectric-triboelectric nanogenerators for flexible electronics: a review of recent advances and perspectives, J. Sci.: Adv. Mater. Devices 7 (3), 100461 (2022). DOI: 10.1016/j.jsamd.2022.100461.
  • S. Sriphan, and N. Vittayakorn, Tribovoltaic effect: fundamental working mechanism and emerging applications, Mater. Today Nano 22, 100318 (2023). DOI: 10.1016/j.mtnano.2023.100318.
  • S. Sriphan et al., High-performance hybridized composited-based piezoelectric and triboelectric nanogenerators based on BaTiO3/PDMS composite film modified with Ti0.8O2 nanosheets and silver nanopowders cofillers, ACS Appl. Energy Mater. 2 (5), 3840 (2019). DOI: 10.1021/acsaem.9b00513.
  • T. Charoonsuk et al., Utilization of commodity thermoplastic polyethylene (PE) by enhanced sensing performance with liquid phase electrolyte for a flexible and transparent triboelectric tactile sensor, Sustain. Mater. Technol. 27, e00239 (2021). DOI: 10.1016/j.susmat.2020.e00239.
  • P. Pakawanit et al., Simple fabrication of porous 3D substrate polydimethylsiloxane (PDMS) composited with polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) for triboelectric nanogenerator, Integr. Ferroelectr. 222 (1), 1 (2022). DOI: 10.1080/10584587.2021.1961511.
  • S. Pongampai et al., High performance flexible tribo/piezoelectric nanogenerators based on BaTiO3/chitosan composites, Integr. Ferroelectr. 223 (1), 137 (2022). DOI: 10.1080/10584587.2021.1964293.
  • U. Pharino et al., Water repellent modified polyester fabric based triboelectric nanogenerator for harvesting human mechanical energies, Integr. Ferroelectr. 223 (1), 127 (2022). DOI: 10.1080/10584587.2021.1964292.
  • D. W. Kim et al., Adding a stretchable deep-trap interlayer for high-performance stretchable triboelectric nanogenerators, Nano Energy 50, 192 (2018). DOI: 10.1016/j.nanoen.2018.05.041.
  • H. Zou et al., Quantifying the triboelectric series, Nat. Commun. 10 (1), 1427 (2019). DOI: 10.1038/s41467-019-09461-x.
  • Y. J. Kim et al., Effect of the relative permittivity of oxides on the performance of triboelectric nanogenerators, RSC Adv. 7 (78), 49368 (2017). DOI: 10.1039/C7RA07274K.
  • H.-J. Kim et al., Bacterial nano‐cellulose triboelectric nanogenerator, Nano Energy 33, 130 (2017). DOI: 10.1016/j.nanoen.2017.01.035.
  • S. Sriphan et al., Multifunctional nanomaterials modification of cellulose paper for efficient triboelectric nanogenerators, Adv. Mater. Technol. 5 (5), 2000001 (2020). DOI: 10.1002/admt.202000001.
  • S. Sriphan et al., Tailoring charge affinity, dielectric property, and band gap of bacterial cellulose paper by multifunctional Ti2NbO7 nanosheets for improving triboelectric nanogenerator performance, Nano Res 16 (2), 3168 (2023). DOI: 10.1007/s12274-022-4957-3.
  • S. Sriphan et al., Flexible capacitive sensor based on 2D-titanium dioxide nanosheets/bacterial cellulose composite film, Nanotechnology 32 (15), 155502 (2021). DOI: 10.1088/1361-6528/abd8ae.
  • S. Chen et al., Crepe cellulose paper and nitrocellulose membrane-based triboelectric nanogenerators for energy harvesting and self-powered human-machine interaction, Nano Energy 61, 69 (2019). DOI: 10.1016/j.nanoen.2019.04.043.
  • S. Nie et al., Enhanced performance of a cellulose nanofibrils-based triboelectric nanogenerator by tuning the surface polarizability and hydrophobicity, Chem. Eng. J. 404, 126512 (2021). DOI: 10.1016/j.cej.2020.126512.
  • T. Maluangnont et al., Dielectric spectroscopy and electric modulus analyses of Ti0.8O2 nanosheets–Ag nanoparticles–cellulose filter paper composites, Integr. Ferroelectr. 224 (1), 214 (2022). DOI: 10.1080/10584587.2022.2035611.
  • D. Park et al., Role of a buried indium zinc oxide layer in the performance enhancement of triboelectric nanogenerators, Nano Energy 55, 501 (2019). DOI: 10.1016/j.nanoen.2018.11.008.
  • M. P. Kim et al., Interfacial polarization-induced high-k polymer dielectric film for high-performance triboelectric devices, Nano Energy 82, 105697 (2021). DOI: 10.1016/j.nanoen.2020.105697.
  • H. Luo et al., Preparation of oriented bacterial cellulose nanofibers by flowing medium-assisted biosynthesis and influence of flowing velocity, J. Polym. Eng. 38 (3), 299 (2018). DOI: 10.1515/polyeng-2017-0040.
  • Y. Chao et al., Rapid synthesis of irregular sub-micron flaky silver with high flake-particle ratio: Application to silver paste, Chem. Phys. Lett. 708, 183 (2018). DOI: 10.1016/j.cplett.2018.08.021.
  • W. Li et al., Green synthesis of micron-sized silver flakes and their application in conductive ink, J. Mater. Sci. 53 (9), 6424 (2018). DOI: 10.1007/s10853-017-1962-0.
  • S. Pan, and Z. Zhang, Fundamental theories and basic principles of triboelectric effect: a review, Friction 7 (1), 2 (2019). DOI: 10.1007/s40544-018-0217-7.
  • L. Zhang et al., Cellulose II aerogel-based triboelectric nanogenerator, Adv. Funct. Mater. 30 (28), 2001763 (2020). DOI: 10.1002/adfm.202001763.
  • N. Cui et al., Dynamic behavior of the triboelectric charges and structural optimization of the friction layer for a triboelectric nanogenerator, ACS Nano 10 (6), 6131 (2016). DOI: 10.1021/acsnano.6b02076.
  • R. Zhang et al., All-inorganic triboelectric nanogenerators based on Mo6S3I6 and indium tin oxide, Nano Energy 89, 106363 (2021). DOI: 10.1016/j.nanoen.2021.106363.
  • H.-W. Park et al., Electron blocking layer-based interfacial design for highly-enhanced triboelectric nanogenerators, Nano Energy 50, 9 (2018). DOI: 10.1016/j.nanoen.2018.05.024.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.