Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 238, 2023 - Issue 1
91
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Bacterial Cellulose/Titanate Nanotubes Composite Kirigami for Flexible and Stretchable Motion Sensor

, , , , , , & show all
Pages 115-124 | Received 15 Jan 2023, Accepted 24 Apr 2023, Published online: 29 Sep 2023

References

  • G. V. Research (2023). Wearable Technology Market Size, Share & Trends Analysis Report By Product (Head & Eyewear, Wristwear), By Application (Consumer Electronics, Healthcare), By Region (Asia Pacific, Europe), And Segment Forecasts, 2023 - 2030 (Report ID: 978-1-68038-165-8). Grand View Research. https://www.grandviewresearch.com/industry-analysis/wearable-technology-market
  • M. Ghahremani Honarvar, and M. Latifi, Overview of wearable electronics and smart textiles, J. Textile Inst.108 (4), 631 (2017). DOI: 10.1080/00405000.2016.1177870.
  • G. Li, and D. Wen, Wearable biochemical sensors for human health monitoring: Sensing materials and manufacturing technologies, J. Mater. Chem. B 8 (16), 3423 (2020). DOI: 10.1039/C9TB02474C.
  • K. Takei et al., Toward flexible and wearable human‐interactive health‐monitoring devices, Adv. Health. Mater. 4 (4), 487 (2015). DOI: 10.1002/adhm.201400546.
  • J. C. Yang et al., Electronic skin: Recent progress and future prospects for skin‐attachable devices for health monitoring, robotics, and prosthetics, Adv. Mater. 31 (48), 1904765 (2019). DOI: 10.1002/adma.201904765.
  • K. Martinez, J. K. Hart, and R. Ong, Environmental sensor networks," Computer 37 (8), 50 (2004). DOI: 10.1109/MC.2004.91.
  • S. Veeralingam, and S. Badhulika, Strain engineered biocompatible h-WO3 nanofibers based highly selective and sensitive chemiresistive platform for detection of Catechol in blood sample, Mater. Sci. Eng. C Mater. Biol. Appl. 108, 110365 (2020). DOI: 10.1016/j.msec.2019.110365.
  • C. Zhang et al., Flexible cellulose/BaTiO3 nanocomposites with high energy density for film dielectric capacitor, ACS Sustainable Chem. Eng. 7 (12), 10641 (2019). DOI: 10.1021/acssuschemeng.9b01302.
  • J. Tao et al., High dielectric thin films based on barium titanate and cellulose nanofibrils, RSC Adv. 10 (10), 5758 (2020). DOI: 10.1039/C9RA10916A.
  • I. Kim et al., All-in-one cellulose based triboelectric nanogenerator for electronic paper using simple filtration process, Nano Energ. 53, 975 (2018). DOI: 10.1016/j.nanoen.2018.09.060.
  • S. Sriphan et al., High-performance hybridized composited-based piezoelectric and triboelectric nanogenerators based on BaTiO3/PDMS composite film modified with Ti0. 8O2 nanosheets and silver nanopowders cofillers, ACS Appl. Energ. Mater. 2 (5), 3840 (2019). DOI: 10.1021/acsaem.9b00513.
  • S. Sriphan et al., Multifunctional nanomaterials modification of cellulose paper for efficient triboelectric nanogenerators, Adv. Mater. Technol. 5 (5), 2000001 (2020). DOI: 10.1002/admt.202000001.
  • S. Sriphan et al., Flexible capacitive sensor based on 2D-titanium dioxide nanosheets/bacterial cellulose composite film, Nanotechnology 32 (15), 155502 (2021). DOI: 10.1088/1361-6528/abd8ae.
  • T. Maluangnont et al., Dielectric spectroscopy and electric modulus analyses of Ti0. 8O2 Nanosheets–Ag nanoparticles–cellulose filter paper composites, Integr. Ferroelectr. 224 (1), 214 (2022). DOI: 10.1080/10584587.2022.2035611.
  • S. Sriphan et al., Tailoring charge affinity, dielectric property, and band gap of bacterial cellulose paper by multifunctional Ti2NbO7 nanosheets for improving triboelectric nanogenerator performance, Nano Res. 16 (2), 3168 (2023). DOI: 10.1007/s12274-022-4957-3.
  • X. Sun, and Y. Li, Synthesis and characterization of ion‐exchangeable titanate nanotubes, Chemistry 9 (10), 2229 (2003). DOI: 10.1002/chem.200204394.
  • T. Maluangnont, and T. Sooknoi, Inclusion of alkali carboxylate salts at the two-dimensional space of layered alkali titanate via carboxylic acids intercalation, J. Solid State Chem. 291, 121648 (2020). DOI: 10.1016/j.jssc.2020.121648.
  • H. Zhou et al., Stretchable piezoelectric energy harvesters and self-powered sensors for wearable and implantable devices, Biosens Bioelectron 168, 112569 (2020). DOI: 10.1016/j.bios.2020.112569.
  • P. Won et al., Stretchable and transparent Kirigami conductor of nanowire percolation network for electronic skin applications, Nano Lett. 19 (9), 6087 (2019). DOI: 10.1021/acs.nanolett.9b02014.
  • K. Niihara, New design concept of structural ceramics ceramic nanocomposites, J. Ceram. Soc. Japan 99 (1154), 974 (1991). DOI: 10.2109/jcersj.99.974.
  • B. Surma-Ślusarska, S. Presler, and D. Danielewicz, Characteristics of bacterial cellulose obtained from Acetobacter xylinum culture for application in papermaking, Fibre. Textile. Eastern Europe 16 (4), 108 (2008). http://nopr.niscpr.res.in/handle/123456789/27372.
  • L. Chougala et al., A simple approach on synthesis of TiO2 nanoparticles and its application in dye sensitized solar cells, J. Nano- Electron. Phys. 9 (4), 04005-1" (2017). DOI: 10.21272/jnep.9(4).04005.
  • R. Mishra et al., Reparation and characterization of amidated pectin based polymer electrolyte membranes, Chinese J. Polym. Sci. 27 (05), 639 (2009). DOI: 10.1142/S0256767909004333.
  • O. Prakash et al., Novel process for isolation of major bio-polymers from Mentha arvensis distilled biomass and saccharification of the isolated cellulose to glucose, Ind. Crops Prod. 119, 1 (2018). DOI: 10.1016/j.indcrop.2018.03.063.
  • J. E. Song et al., Improvement of bacterial cellulose nonwoven fabrics by physical entrapment of lauryl gallate oligomers, Text. Res. J. 90 (2), 166 (2020). DOI: 10.1177/0040517519862886.
  • A. Basta, and H. El‐Saied, Performance of improved bacterial cellulose application in the production of functional paper, J. Appl. Microbiol. 107 (6), 2098 (2009). DOI: 10.1111/j.1365-2672.2009.04467.x.
  • S. Sriphan et al., Effect of adsorbed water and temperature on the universal power law behavior of lepidocrocite-type alkali titanate ceramics, J. Phys. Chem. C 125 (23), 12910 (2021). DOI: 10.1021/acs.jpcc.1c02221.
  • T. Charoonsuk et al., AC conductivity and dielectric properties of lepidocrocite-type alkali titanate tunable by interlayer cation and intralayer metal, Inorg. Chem. 59 (21), 15813 (2020). DOI: 10.1021/acs.inorgchem.0c02264.
  • N. Maluangnont and T. Vittayakorn, Giant dielectric constants in K0. 8M0. 4Ti1. 6O4 (M = Ni, Zn) lepidocrocite-type layered titanate ceramics, Integr. Ferroelectr. 195 (1), 100 (2019). DOI: 10.1080/10584587.2019.1570024.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.