Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 238, 2023 - Issue 1
150
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of La Doping on Local Structure of Hafnium Oxide Studied by X-Ray Absorption Spectroscopy

ORCID Icon, , & ORCID Icon
Pages 125-135 | Received 15 Jan 2023, Accepted 29 Apr 2023, Published online: 29 Sep 2023

References

  • J. Muller et al., Ferroelectricity in simple binary ZrO2 and HfO2, Nano Lett. 12 (8), 4318 (2012). DOI: 10.1021/nl302049k.
  • X. Sang et al., On the structural origins of ferroelectricity in HfO2 thin films, Appl. Phys. Lett. 106 (16), 162905 (2015). DOI: 10.1063/1.4919135.
  • M. H. Park et al., Review and perspective on ferroelectric HfO2-based thin films for memory applications, MRS Commun. 8 (3), 795 (2018). DOI: 10.1557/mrc.2018.175.
  • M. H. Park et al., Ferroelectricity and antiferroelectricity of doped thin HfO2‐based films, Adv. Mater. 27 (11), 1811 (2015). DOI: 10.1002/adma.201404531.
  • E. D. Grimley et al., Structural changes underlying field‐cycling phenomena in ferroelectric HfO2 thin films, Adv. Electron. Mater. 2 (9), 1600173 (2016). DOI: 10.1002/aelm.201600173.
  • J. Liu et al., Advanced energy storage devices: Basic principles, analytical methods, and rational materials design, Adv. Sci. 5 (1), 1700322 (2018). DOI: 10.1002/advs.201700322.
  • G. Giuli et al., V oxidation state and coordination number in silicate glasses by XAS, Am. Miner. 89 (11–12), 1640 (2004). DOI: 10.2138/am-2004-11-1208.
  • J. W. Drewitt et al., Structure of (FexCa1−xO)y (SiO2)1−y liquids and glasses from high-energy X-ray diffraction: Implications for the structure of natural basaltic magmas, Phys. Rev. B 87 (22), 224201 (2013). DOI: 10.1103/PhysRevB.87.224201.
  • D. De Ligny et al., Silica polymorphs, glass and melt: An in situ high temperature XAS study at the Si K-edge, J. Non-Cryst. Solids 355 (18–21), 1099 (2009). DOI: 10.1016/j.jnoncrysol.2008.11.038.
  • V. M. Gonzalez-delaCruz et al., In situ XAS study of synergic effects on Ni–Co/ZrO2 methane reforming catalysts, J. Phys. Chem. C 116 (4), 2919 (2012). DOI: 10.1021/jp2092048.
  • A. Tsoukalou et al., Structural evolution and dynamics of an In2O3 Catalyst for CO2 hydrogenation to methanol: An operando XAS-XRD and in situ TEM study, J. Am. Chem. Soc. 141 (34), 13497 (2019). DOI: 10.1021/jacs.9b04873.
  • M. G. Kim et al., XAS investigation of inhomogeneous metal-oxygen bond covalency in bulk and surface for charge compensation in Li-ion battery cathode Li[Ni1∕3Co1∕3Mn1∕3]O2 material, J. Electrochem. Soc. 152 (7), A1320 (2005). DOI: 10.1149/1.1926647.
  • C. Dietrich et al., Spectroscopic characterization of lithium thiophosphates by XPS and XAS–A model to help monitor interfacial reactions in all-solid-state batteries, Phys. Chem. Chem. Phys. 20 (30), 20088 (2018). DOI: 10.1039/c8cp01968a.
  • J. Zhang et al., XAS investigations on nanocrystalline Mg2FeH6 used as a negative electrode of Li-ion batteries, J. Mater. Chem. A 1 (15), 4706 (2013). DOI: 10.1039/c3ta01482g.
  • D. Dixon et al., Difference in electrochemical mechanism of SnO2 conversion in lithium-ion and sodium-ion batteries: Combined in operando and ex situ XAS investigations, ACS Omega 4 (6), 9731 (2019). DOI: 10.1021/acsomega.9b00563.
  • O. Y. Khyzhun, XPS, XES and XAS studies of the electronic structure of tungsten oxides, J. Alloys Compd. 305 (1–2), 1 (2000). DOI: 10.1016/S0925-8388(00)00697-6.
  • J. Yano, and V. K. Yachandra, X-ray absorption spectroscopy, Photosynth. Res. 102 (2–3), 241 (2009). DOI: 10.1007/s11120-009-9473-8.
  • Z. J. Wang et al., Crystalline phases, microstructures and electrical properties of hafnium oxide films deposited by sol–gel method, J. Cryst. Growth. 281 (2–4), 452 (2005). DOI: 10.1016/j.jcrysgro.2005.04.036.
  • N. Afify, G. Dalba, and F. Rocca, XRD and EXAFS studies on the structure of Er3+-doped SiO2–HfO2 glass-ceramic waveguides: Er3+-activated HfO2 nanocrystals, J. Phys. D Appl. Phys. 42 (11), 115416 (2009). DOI: 10.1088/0022-3727/42/11/115416.
  • S. Erenburg et al., Short-range order in amorphous and crystalline ferroelectric Hf0.5Zr0.5O2, J. Exp. Theor. Phys. 126 (6), 816 (2018). DOI: 10.1134/S1063776118060031.
  • D.-Y. Cho et al., Stabilization of tetragonal HfO2 under low active oxygen source environment in atomic layer deposition, Chem. Mater. 24 (18), 3534 (2012). DOI: 10.1021/cm3001199.
  • B. Cojocaru et al., Phase control in Hafnia: New synthesis approach and convergence of average and local structure properties, ACS Omega 4 (5), 8881 (2019). DOI: 10.1021/acsomega.9b00580.
  • Y. Yang et al., Local structure and energy-band alignment of HfO2 and HfO2–La2O3 on strained Si0.65Ge0.35, J. Alloys Compd. 606, 68 (2014). DOI: 10.1016/j.jallcom.2014.03.193.
  • A. Jain et al., Commentary: The materials project: A materials genome approach to accelerating materials innovation, APL Mater. 1 (1), 011002 (2013). DOI: 10.1063/1.4812323.
  • D.-Y. Cho et al., Interfacial metal–oxide interactions in resistive switching memories, ACS Appl. Mater. Interfaces 9 (22), 19287 (2017). DOI: 10.1021/acsami.7b02921.
  • B. Ravel, and M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT, J. Synchrotron. Radiat. 12 (Pt 4), 537 (2005). DOI: 10.1107/S0909049505012719.
  • P. S. Lysaght et al., Characterizing crystalline polymorph transitions in HfO2 by extended X-ray absorption fine-structure spectroscopy, Appl. Phys. Lett. 91 (12), 122910 (2007). DOI: 10.1063/1.2789180.
  • M. E. McBriarty et al., Crystal phase distribution and ferroelectricity in ultrathin HfO2–ZrO2 bilayers, Phys. Status Solidi B 257 (1), 1900285 (2020). DOI: 10.1002/pssb.201900285.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.