Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 238, 2023 - Issue 1
72
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Multiferroic Properties of (1-x)BiFeO3-xBaTiO3 Lead-Free Ceramics

, , , , &
Pages 136-146 | Received 15 Jan 2023, Accepted 29 Apr 2023, Published online: 29 Sep 2023

References

  • M. M. Vopson, Fundamentals of multiferroic materials and their possible applications, Crit. Rev. Solid State Mater. Sci. 40 (4), 223 (2015). DOI: 10.1080/10408436.2014.992584.
  • Y. K. Fetisov, and G. Srinivasan, Electric field tuning characteristics of a ferrite-piezoelectric microwave resonator, Appl. Phys. Lett. 88 (14), 143503 (2006). DOI: 10.1063/1.2191950.
  • A. B. Ustinov, G. Srinivasan, and B. A. Kalinikos, Ferrite-ferroelectric hybrid wave phase shifters, Appl. Phys. Lett. 90 (3), 031913 (2007). DOI: 10.1063/1.2432953.
  • Y. K. Fetisov, and G. Srinivasan, Electrically tunable ferrite-ferroelectric microwave delay lines, Appl. Phys. Lett. 87 (10), 103502 (2005). DOI: 10.1063/1.2037860.
  • E. Y. Tsymbal et al., Ferroelectric and multiferroic tunnel junctions, MRS Bull 37 (2), 138 (2012). DOI: 10.1557/mrs.2011.358.
  • R. Nechache et al., Photovoltaic properties of Bi2FeCrO6Bi2FeCrO6 epitaxial thin films, Appl. Phys. Lett. 98 (20), 202902 (2011). DOI: 10.1063/1.3590270.
  • V. Srivastava et al., The direct conversion of heat to electricity using multiferroic alloys, Adv. Energy Mater. 1 (1), 97 (2011). DOI: 10.1002/aenm.201000048.
  • G. Catalan, and J. F. Scott, Physics and applications of bismuth ferrite, Adv. Mater 21 (24), 2463 (2009). DOI: 10.1002/adma.200802849.
  • T. Futakuchi, T. Kakuda, and Y. Sakai, Multiferroic properties of BiFeO3-BaTiO3 based ceramics, J. Ceram. Soc. Japan 122 (1426), 464 (2014). DOI: 10.2109/jcersj2.122.464.
  • J. Li et al., Dramatically enhanced polarization in (001), (101), and (111) BiFeO3 thin films due to epitiaxial-induced transitions, Appl. Phys. Lett. 84 (25), 5261 (2004). DOI: 10.1063/1.1764944.
  • Z. Yu et al., Large piezoelectricity and high Curie temperature in novel bismuth ferrite-based ferroelectric ceramics, J. Am. Ceram. Soc. 103 (11), 6435 (2020). DOI: 10.1111/jace.17382.
  • Z. Yu et al., Microstructure effects on the energy storage density in BiFeO3-based ferroelectric ceramics, Ceram. Int. 47 (9), 12735 (2021). DOI: 10.1016/j.ceramint.2021.01.133.
  • T. Zheng, and J. Wu, Enhanced piezoelectric activity in high-temperature Bi1−x−ySmxLayFeO3 lead-free ceramics, J. Mater. Chem. C 3 (15), 3684 (2015). DOI: 10.1039/C5TC00363F.
  • M. H. Lee et al., High-performance lead-free piezoceramics with high curie temperatures, Adv. Mater. 27 (43), 6976 (2015). DOI: 10.1002/adma.201502424.
  • L.-F. Zhu et al., Piezoelectric, ferroelectric and ferromagnetic properties of (1-x)BiFeO3-xBaTiO3 lead-free ceramics near morphotropic phase boundary, J. Mater. Sci. Mater. Electron 29 (3), 2307 (2018). DOI: 10.1007/s10854-017-8147-0.
  • S. Cheng et al., Lead-free 0.7BiFeO3- 0.3BaTiO3 high-temperature piezoelectric ceramics: Nano-BaTiO3 raw powder leading to a distinct reaction path and enhanced electrical properties, Ceram. Int. 45 (8), 10438 (2019). DOI: 10.1016/j.ceramint.2019.02.104.
  • W. Yi et al., Relationship between chemical composition, phase structure and piezoelectric property of BiFeO3–BaTiO3 ceramics near morphotropic phase boundary, J. Mater. Sci. Mater. Electron 32 (6), 7719 (2021). DOI: 10.1007/s10854-021-05490-9.
  • S. Cheng et al., Enhanced insulating and piezoelectric properties of 0.7BiFeO3–0.3BaTiO3 lead-free ceramics by optimizing calcination temperature: Analysis of Bi3+ volatilization and phase structures, J. Mater. Chem. C 6 (15), 3982 (2018). DOI: 10.1039/C8TC00329G.
  • J. Liu et al., Enhanced magnetoelectric coupling characteristics of Mn2O3-modified BiFeO3-based ceramics, J. Magn. Magn. Mater. 527, 167777 (2021). DOI: 10.1016/j.jmmm.2021.167777.
  • I. Calisir, and D. A. Hall, Chemical heterogeneity and approaches to its control in BiFeO3–BaTiO3 lead-free ferroelectrics, J. Mater. Chem. C 6 (1), 134 (2018). DOI: 10.1039/C7TC04122E.
  • B. Wang et al., Microchemical homogeneity and quenching-induced property enhancement in BiFeO3–BaTiO3 ceramics, Open Ceramic. 13, 100322 (2023). DOI: 10.1016/j.oceram.2022.100322.
  • D. Lin et al., Microstructure, ferroelectric and piezoelectric properties of Bi0.5K0.5TiO3-modified BiFeO3–BaTiO3 lead-free ceramics with high Curie temperature, J. Eur. Ceram. Soc. 33 (15–16), 3023 (2013). DOI: 10.1016/j.jeurceramsoc.2013.06.029.
  • S. Kumari et al., Dielectric anomalies due to grain boundary conduction in chemically substituted BiFeO3, J. Appl. Phys. 117 (11), 114102 (2015). DOI: 10.1063/1.4915110.
  • T. Sebastian et al., High temperature piezoelectric ceramics in the Bi(Mg1/2Ti1/2)O3- BiFeO3-BiScO3-PbTiO3 system, J Electroceram. 25 (2-4), 130 (2010). DOI: 10.1007/s10832-010-9600-0.
  • I. Sterianou et al., Investigation of high Curie temperature (1 − x)BiSc1 − yFeyO3–xPbTiO3 piezoelectric ceramics, J. Appl. Phys. 106 (8), 084107 (2009). DOI: 10.1063/1.3253585.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.