Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 238, 2023 - Issue 1
35
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Phase Formation, Morphology and Electrical Properties of Lead-Free BNBLT-xBSN Ceramics Synthesized via the Solid-State Combustion Technique

, , &
Pages 147-159 | Received 15 Jan 2023, Accepted 29 Apr 2023, Published online: 29 Sep 2023

References

  • G. H. Haertling, Ferroelectric ceramics: history and technology, J. Am. Ceram. Soc. 82 (4), 797 (1999). DOI: 10.1111/j.1151-2916.1999.tb01840.x.
  • K. N. Singh et al., Structural and Raman spectroscopic study of antimony doped Bi0.5Na0.5TiO3 electroceramic, MSCE 03 (08), 43 (2015). DOI: 10.4236/msce.2015.38007.
  • T. Takenaka et al., (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics, Jpn. J. Appl. Phys. 30 (9S), 2236 (1991). DOI: 10.1143/JJAP.30.2236.
  • A. Herabut, and A. Safari, Processing and electromechanical properties of (Bi0.5Na0.5)(1-1.5x)LaxTiO3 ceramics, J. Am. Ceramic Soc. 80 (11), 2954 (1997). DOI: 10.1111/j.1151-2916.1997.tb03219.x.
  • Y. J. Hiruma et al., Thermal depoling process and piezoelectric properties of bismuth sodium titanate ceramics, J. Appl. Phys. 105 (8), 084112 (2009). DOI: 10.1063/1.3115409.
  • Y. S. Sung et al., notRoles of lattice distortion in (1-x)Bi0.5Na0.5TiO3-xBaTiO3 ceramics, Appl. Phys. Lett. 96 (20), 202901 (2010). DOI: 10.1063/1.3428580.
  • C. Liu et al., Advanced materials for energy storage, Adv. Mater. 22 (8), E28 (2010). DOI: 10.1002/adma.200903328.
  • F. Li et al., Huge strain and energy storage density of A-site La3+ donor doped (Bi0.5Na0.5)0.94Ba0.06TiO3 ceramics, Ceram. Int 43 (1), 106 (2017). DOI: 10.1016/j.ceramint.2016.09.117.
  • Q. Li et al., Enhanced temperature stable dielectric properties and energy-storage density of BaSnO3-modified (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics, Ceram. Int. 45 (16), 19822 (2019). DOI: 10.1016/j.ceramint.2019.06.237.
  • Y. Jia et al., Large electrostrain and high energy-storage of (1-x)[0.94(Bi0.5Na0.5) TiO3 - 0.06BaTiO3]-xBa(Sn0.70Nb0.24)O3 lead-free ceramics, Ceram. Int. 47 (13), 18487 (2021). DOI: 10.1016/j.ceramint.2021.03.172.
  • B. Thatawong et al., Effects of the phase content and grain size on the electrical and energy storage properties of lead-free BNBT ceramics with substituted La3+, Ferroelectrics 601 (1), 81 (2022). DOI: 10.1080/00150193.2022.2130781.
  • B. Thatawong et al., Dielectric and piezoelectric properties near the morphotropic phase boundary for 0.94BNT-0.06BT ceramics synthesized by the solid-state combustion technique, Ferroelectrics 586 (1), 199 (2022). DOI: 10.1080/00150193.2021.2014271.
  • A. Thongtha et al., Fabrication of (Ba1-xSrx)(ZrxTi1-x)O3 ceramics using the combustion technique, Smart Mater. Struct. 19, 1 (12), 124001 (2010). DOI: 10.1088/0964-1726/19/12/124001.
  • T. Bongkarn et al., Excellent piezoelectric and ferroelectric properties of KNLNTS ceramics with Fe2O3 doping synthesized by the solid-state combustion technique, J. Alloys Compd. 682, 14 (2016). DOI: 10.1016/j.jallcom.2016.04.285.
  • R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. A. 32 (5), 751 (1976). DOI: 10.1107/S0567739476001551.
  • P. Pookmanee et al., Effect of sintering temperature on microstructure of hydrothermally prepared bismuth sodium titanate ceramics, J. Eur. Ceram. Soc. 24 (2), 517 (2004). DOI: 10.1016/S0955-2219(03)00197-3.
  • A. Thongtha et al., Phase formation, microstructure and dielectric properties of bismuth potassium titanate ceramic fabricated using the combustion technique, Integr. Ferroelectr. 149 (1), 32 (2013). DOI: 10.1080/10584587.2013.852921.
  • S. Wei Lu et al., Hydrothermal synthesis and structural characterization of BaTiO3 nanocrystals, J. Cryst. Growth 219 (3), 269 (2000). DOI: 10.1016/S0022-0248(00)00619-9.
  • A. Anwar et al., From Bulk to Nano: A comparative investigation of Structural, Ferroelectric and Magnetic properties of Sm and Ti co-doped BiFeO3 multiferroics, Mater. Res. Bull. 111, 93 (2019). DOI: 10.1016/j.materresbull.2018.11.003.
  • S. Fliszar, Atomic charges, bond properties, and molecular energies (John Wiley & Sons, Inc., Hoboken, New Jersey, U.S.2008), pp. 151–166. DOI: 10.1002/9780470405918.
  • Z. Hanani et al., Structural, dielectric, and ferroelectric properties of lead‑free BCZT ceramics elaborated by low‑temperature hydrothermal processing, J. Mater. Sci.: Mater. Electron. 31 (13), 10096 (2020). DOI: 10.1007/s10854-020-03555-9.
  • Z. Yang et al., Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties, Nano Energy. 58, 768 (2019). DOI: 10.1016/j.nanoen.2019.02.003.
  • K. Wu et al., Large energy storage density and efficiency of Sm2O3-doped Ba0.85Ca0.15Zr0.08Ti0.92O3 lead-free ceramics, J. Mater. Sci.: Mater. Electron. 32 (7), 9650 (2021). DOI: 10.1007/s10854-021-05626-x.
  • H. Palneedi et al., High-performance dielectric ceramic films for energy storage capacitors: Progress and outlook, Adv. Funct. Mater. 28 (42), 1803665 (2018). DOI: 10.1002/adfm.201803665.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.