Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 238, 2023 - Issue 1
95
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Glass-Ceramic Na3+x[(Zr/Cr)x(Sc/Ti)2-x(PO4)3 Electrolyte Materials for Na-Ion Full-Cell Application

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 334-342 | Received 15 Jan 2023, Accepted 11 May 2023, Published online: 29 Sep 2023

References

  • C. Zhao et al., Solid‐state sodium batteries, Adv. Energy Mater. 8 (17), 1703012 (2018). DOI: 10.1002/aenm.201703012.
  • H. Pan, Y. S. Hu, and L. Chen, Room-temperature stationary sodium-ion batteries for large-scale electric energy storage, Energy Environ. Sci. 6 (8), 2338 (2013). DOI: 10.1039/c3ee40847g.
  • C. Zhou, S. Bag, and V. Thangadurai, Engineering materials for progressive all-solid-state Na batteries, ACS Energy Lett. 3 (9), 2181 (2018). DOI: 10.1021/acsenergylett.8b00948.
  • N. Tanibata et al., Preparation and characterization of Na3PS4–Na4GeS4 glass and glass-ceramic electrolytes, Solid State Ion 320, 193 (2018). DOI: 10.1016/j.ssi.2018.02.042.
  • Y. Shao et al., A novel NASICON-based glass-ceramic composite electrolyte with enhanced Na-ion conductivity, Energy Storage Mater. 23, 514 (2019). DOI: 10.1016/j.ensm.2019.04.009.
  • D. Zhang et al., Synthesis of cubic Na3SbS4 solid electrolyte with enhanced ion transport for all-solid-state sodium-ion batteries, Electrochim. Acta 259, 100 (2018). DOI: 10.1016/j.electacta.2017.10.173.
  • Z. Sun et al., Solid‐state Na metal batteries with superior cycling stability enabled by ferroelectric enhanced Na/Na3Zr2Si2PO12 interface, Small 18 (16), e2200716 (2022). DOI: 10.1002/smll.202200716.
  • F. Danzi et al., Sodium and potassium ion rich ferroelectric solid electrolytes for traditional and electrode-less structural batteries, APL Mater. 10 (3), 031111 (2022). DOI: 10.1063/5.0080054.
  • S. S. Gandi et al., Na3+x[CrxTi 2-x(PO4)3]glass-ceramic electrolyte: Ionic conductivity and structural correlations for different heat treating temperatures and time schedules, Ionics 25 (9), 4179 (2019). DOI: 10.1007/s11581-019-02979-6.
  • G. Sundar et al., Investigation on the applicability of high Na-ion conducting Na3+x[ZrxSc2-x(PO4)3]glass-ceramic electrolyte for use in safer Na-ion batteries, J. Phys. Chem. Solids 126, 209 (2019). DOI: 10.1016/j.jpcs.2018.11.016.
  • S. S. Gandi et al., Electrical properties and scaling studies of Na3+xZrxSc2−x(PO4)3 glass ceramic electrolyte for use in Na-ion batteries, Appl. Phys. A 125 (2), 92 (2019). DOI: 10.1007/s00339-019-2392-4.
  • F. Mizuno et al., All-solid-state lithium secondary batteries using Li2S–SiS2–Li4SiO4 glasses and Li2S–P2S5 glass ceramics as solid electrolytes, Solid State Ionics 175 (1–4), 699 (2004). DOI: 10.1016/j.ssi.2004.08.027.
  • A. Raskovalov et al., The all-solid-state battery with vanadate glass-ceramic cathode, Ionics 24 (11), 3299 (2018). DOI: 10.1007/s11581-018-2686-0.
  • S. Li et al., A nanoarchitectured Na6Fe5(SO4)/CNTs cathode for building a low-cost 3.6 V sodium-ion full battery with superior sodium storage, J. Mater. Chem. A 7 (24), 14656 (2019). DOI: 10.1039/C9TA03089A.
  • G. Suman et al., Mixed polyanion NaFe1−x(VO)xPO4g lass–ceramic cathode system for safe and large-scale economic Na-ion battery applications, New J. Chem. 44 (7), 2897 (2020). DOI: 10.1039/C9NJ05684J.
  • J. S. Thokchom, N. Gupta, and B. Kumar, Superionic conductivity in a lithium aluminum germanium phosphate glass–ceramic, J. Electrochem. Soc. 155 (12), A915 (2008). DOI: 10.1149/1.2988731.
  • J. S. Thokchom, and B. Kumar, Composite effect in superionically conducting lithium aluminium germanium phosphate based glass-ceramic, J. Power Sourc. 185 (1), 480 (2008). DOI: 10.1016/j.jpowsour.2008.07.009.
  • S. Gandi et al., High Na‐ion conducting Na1+x[SnxGe2−x(PO4)3] glass‐ceramic electrolytes: Structural and electrochemical impedance studies, J. Am. Ceram. Soc. 101 (1), 167 (2018). DOI: 10.1111/jace.15103.
  • K. V. Krishna et al., Enhanced long cycle life stability and high storage reversible capacity retention of a dodium vanadate zinc glass–ceramic network, ACS Energy Fuels 36 (12), 6492 (2022). DOI: 10.1021/acs.energyfuels.2c00597.
  • J. E. Trevey, Y. S. Jung, and S.-H. Lee, Preparation of Li2S–GeSe2–P2S5 electrolytes by a single step ball milling for all-solid-state lithium secondary batteries, J. Power Sourc. 195 (15), 4984 (2010). DOI: 10.1016/j.jpowsour.2010.02.042.
  • H. Kitaura et al., Electrochemical performance of all-solid-state lithium secondary batteries with Li–Ni–Co–Mn oxide positive electrodes, Electrochim. Acta 55 (28), 8821 (2010). DOI: 10.1016/j.electacta.2010.07.066.
  • L. Wang et al., Effect of synthesis temperature on the properties of LiFePO4/C composites prepared by carbothermal reduction, J.Power Sourc. 189 (1), 423 (2009). DOI: 10.1016/j.jpowsour.2008.07.032.
  • A. Sarkar, S. Sarkar, and S. Mitra, Exceptionally high sodium-ion battery cathode capacity based on doped ammonium vanadium oxide and a full cell SIB prototype study, J. Mater. Chem. A 5 (47), 24929 (2017). DOI: 10.1039/C7TA08104A.
  • S. Ghosh et al., An insight of sodium-ion storage, diffusivity into TiO2 nanoparticles and practical realization to sodium-ion full cell, Electrochim. Acta 316, 69 (2019). DOI: 10.1016/j.electacta.2019.05.109.
  • K. V. Krishna et al., Mixed polyanion Na‐Mn‐V‐P glass–ceramic cathode network: improved electrochemical performance and stability, Energy Technol. 2, 2000845 (2021). DOI: 10.1002/ente.202000845.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.