Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 238, 2023 - Issue 1
81
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhancement of the Dielectric and Energy Storage Properties of Lead-Free BNSLT Ceramics by Zr4+ Substitution into B-Sites

, , , , , & show all
Pages 39-51 | Received 15 Jan 2023, Accepted 14 Apr 2023, Published online: 29 Sep 2023

References

  • J. Camargo et al., Influence of the sintering process on ferroelectric properties of Bi0.5(Na0.8K0.2)0.5 lead free piezoelectric ceramics, J. Mater. Sci: Mater. Electron. 29 (7), 5427 (2018). DOI: 10.1007/s10854-017-8508-8.
  • G. H. Haertling, Ferroelectric ceramics: History and technology, J. Am. Ceram. Soc. 82 (4), 797 (1999). DOI: 10.1111/j.1151-2916.1999.tb01840.x.
  • W. Zeng et at., A new insight onto structure complexity in ferroelectric ceramics, J. Adv. Ceram. 6 (3), 262 (2017). DOI: 10.1007/s40145-017-0237-1.
  • D. Q. Xiao et al., Investigation on the design and synthesis of new systems of BNT-based lead-free piezoelectric ceramics, J Electroceram. 16 (4), 271 (2006). DOI: 10.1007/s10832-006-9863-7.
  • Q. Xu et al., Enhanced energy storage properties of NaNbO3 modified Bi0.5Na0.5TiO3 based ceramics, J. Eur. Ceram. Soc, 35 (2), 545 (2015). DOI: 10.1016/j.jeurceramsoc.2014.09.003.
  • J. Yin et al., Ultrahigh energy-storage potential under low electric field in bismuth sodium titanate-based perovskite ferroelectrics, J. Mater. Chem. A. 6 (21), 9823 (2018). DOI: 10.1039/C8TA00474A.
  • C. Wang et al., Dielectric and ferroelectric properties of SrTiO3-Bi0.54Na0.46TiO3-BaTiO3 lead-free ceramics for high energy storage applications, J. Alloys Compd. 749, 605 (2018). DOI: 10.1016/j.jallcom.2018.03.195.
  • Z. Yu et al., Enhanced energy storage properties of BiAlO3 modified Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 lead-free antiferroelectric ceramics, Ceram. Int. 43 (10), 7653 (2017). DOI: 10.1016/j.ceramint.2017.03.062.
  • L. Zhang et al., Influence of BaSnO3 additive on the energy storage properties of Na0.5Bi0.5TiO3-based relaxor ferroelectrics, J. Eur. Ceram. Soc. 38 (5), 2304 (2018). DOI: 10.1016/j.jeurceramsoc.2017.11.053.
  • T. Sinkruason et al., Phase formation, microstructure and electrical properties of BNT-SBT ceramics prepared via the solid state combustion technique, Ferroelectrics. 601 (1), 108 (2022). DOI: 10.1080/00150193.2022.2151864.
  • Q. Li et al., Enhanced energy-storage performance of (1-x)(0.72Bi0.5Na0.5TiO3-0.28Bi0.2Sr0.7□0.1TiO3)-xLa ceramics, J. Alloys Compd. 775, 116 (2019). DOI: 10.1016/j.jallcom.2018.10.092.
  • M. Zhao et al., Ba(Zr0.3Ti0.7)O3 doping to enhance the dielectric and energy discharging performances of a 0.65Bi0.5, Na0.5TiO3–0.35Sr0.7Bi0.2TiO3 lead-free ceramic, J. Mater. Sci: Mater. Electron. 33 (27), 21702 (2022). DOI: 10.1007/s10854-022-08958-4.
  • G. Liu et al., Investigation of electrical and electric energy storage properties of La –doped Na0.3Sr0.4Bi0.3TiO3 based Pb-free ceramics, Ceram. Int. 46 (11), 19375 (2020). DOI: 10.1016/j.ceramint.2020.04.208.
  • A. Ullah et al., Dielectric and electromechanical properties of Zr-doped BNT-ST Lead-Free Piezoelectric Ceramics, J. Korean Phys. Soc. 74 (6), 589 (2019). DOI: 10.3938/jkps.74.589.
  • P. Butnoi et al., High thermal stability of energy storage density and large strain improvement of lead-free Bi0.5(Na0.80K0.20)0.5TiO3 piezoelectric ceramics doped with La and Zr, J. Eur. Ceram. Soc. 38 (11), 3822 (2018). DOI: 10.1016/j.jeurceramsoc.2018.04.024.
  • X. Lu et al., Energy storage properties of (Bi0.5Na0.5)0.93Ba0.07TiO3 lead-free ceramics modified by La and Zr co-doping, J. Materiomics. 2 (1), 87 (2016). DOI: 10.1016/j.jmat.2016.02.001.
  • P. Bhupaijit et al., Structural study of (1-x)BNKLT-xBZT ceramics using XRD, Raman spectroscopy and XAS, Integr. Ferroelectr. 195 (1), 144 (2019). DOI: 10.1080/10584587.2019.1570028.
  • Z. Hanani et al., Structural, dielectric, and ferroelectric properties of lead free BCZT ceramics elaborated by low temperature hydrothermal processing, J. Mater. Sci. Mater. Electron. 31 (13), 10096 (2020). DOI: 10.1007/s10854-020-03555-9.
  • C. Wang et al., The dielectric, strain and energy storage density of BNT-BKHxT1-x piezoelectric ceramics, Ceram. Int. 43 (12), 9253 (2017). DOI: 10.1016/j.ceramint.2017.04.081.
  • P. Bhupaijit et al., Enhanced electrical properties near the morphotropic phase boundary in lead-free Bi0.5Na0.34K0.11Li0.05Ti1-xNixO3-δ ceramics, Radiat. Phys. Chem. 189, 109716 (2021). DOI: 10.1016/j.radphyschem.2021.109716.
  • W. Yansen et al., Rietveld analysis and multiferroic properties of Fe doped Ba0.95Bi0.05TiO3 ceramics, Curr. Appl. Phys. 15 (2), 120 (2015). DOI: 10.1016/j.cap.2014.12.001.
  • S. Prasertpalichat et al., Comparison of structure, ferroelectric, and piezoelectric properties between A-site and B-site acceptor doped 0.93Bi0.5Na0.5TiO3-0.07BaTiO3 lead-free piezoceramics, J. Eur. Ceram. Soc. 41 (7), 4116 (2021). DOI: 10.1016/j.jeuceramsoc.2021.02.003.
  • S. Prasertpalichat et al., Structural characterization of A-site nonstoichiometric (1-x)Bi0.5Na0.5TiO3-xBaTiO3 ceramics, J. Mater. Sci. 54 (2), 1162 (2019). DOI: 10.1007/s10853-018-2939-3.
  • S. K. Rout et al., Impact of multiple phases on ferroelectric and piezoelectric performances of BNKT–BZT ceramic, J. Mater. Sci. Mater. Electron. 29 (22), 19524 (2018). DOI: 10.1007/s10854-018-0083-0.
  • R. Sumang et al., Investigation of a new lead-free (1-x-y)BNT-xBKT-yBZT piezoelectric ceramics, Ceram. Int. 43, S102 (2017). DOI: 10.1016/j.ceramint.2017.05.239.
  • W. Lu et al., The structural and electric properties of Li- and K- substituted Bi0.5Na0.5TiO3 ferroelectric ceramics, J. Alloys Compd. 509 (6), 2738 (2011). DOI: 10.1016/j.jallcom.2010.10.041.
  • A. Hussain et al., Field-induced strain and polarization response in lead-free Bi1/2(Na0.80K0.20)1/2TiO3-SrZrO3 ceramics, Mater. Chem. Phys. 143 (3), 1282 (2014). DOI: 10.1016/j.matchemphys.2013.11.035.
  • P. Jaita et al., Electric field-induced strain response of lead-free Fe2O3 nanoparticles modified Bi0.5(Na0.80K0.20), 0.5TiO3-0.03(Ba0.70Sr0.03)TiO3 piezoelectric ceramics, Ceram. Int. 43, S2 (2017). DOI: 10.1016/j.ceramint.2017.05.193.
  • G. Viola et al., Lithium-induced phase transitions in lead-free Bi0.5Na0.5TiO3 based ceramics, J. Phys. Chem. C. 118 (16), 8564 (2014). DOI: 10.1021/jp500609h.
  • H. Zie et al., Structure, dielectric, ferroelectric, and field-induced strain response properties of (Mg1/3Nb2/3)4+ complex-ion modified Bi0.5(Na0.82K0.18)0.5TiO3 lead-free ceramics, J. Alloys. Compd. 743, 73 (2018). DOI: 10.1016/j.jallcom.2018.01.367.
  • T. Badapanda, S. Sahoo, and P. Nayak, Dielectric, ferroelectric and piezoelectric study of BNT-BT solid solutions around the MPB region, IOP Conf. Ser. Mater. Sci. Eng. 178, 012032 (2017). DOI: 10.1088/1757-899X/178/1/012032.
  • J. Hao et al., Field-induced large strain in lead-free 0.99[(1-x)Bi0.5(Na0.80K0.20)0.5TiO3, xBiFeO3]-0.01(K0.5Na0.5)NbO3 piezoelectric ceramics, Ceram. Int. 42 (11), 12964 (2016). DOI: 10.1016/j.ceramint.2016.05.069.
  • F. Wang et al., Large strain response in the ternary Bi0.5Na0.5TiO3–BaTiO3–SrTiO3 solid solutions, J. Am. Ceram. Soc. 95 (6), 1955 (2012). DOI: 10.1111/j.1551-2916.2012.05119.x.
  • P. Bhupaijit et al., Phase evolution, microstructure, electrical, and magnetic properties of Bi0.5(Na0.68K0.22Li0.10)0.5TiO3 ceramics with Fe3+ substitution, Phys. Status Solidi A. 217 (12), 1900983 (2020). DOI: 10.1002/pssa.201900983.
  • B. Y. Qu et al., Large recoverable energy storage density and low sintering temperature in potassium-sodium niobate-based ceramics for multilayer pulsed power capacitors, J. Am. Ceram. Soc. 100 (4), 1517 (2017). DOI: 10.1111/jace.14728.
  • A. Chauhan, S. Patel, and R. Vaish, Mechanical confinement for improved energy storage density in BNT-BT-KNN lead-free ceramic capacitors, AIP Adv. 4 (8), 087106 (2014). DOI: 10.1063/1.4892608.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.