Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 238, 2023 - Issue 1
43
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Temperature Effect on Fatigue Behavior of BCZT Ceramics and Defects Analysis by Synchrotron X-Ray Absorption Spectroscopy

, , , , &
Pages 70-82 | Received 15 Jan 2023, Accepted 18 Apr 2023, Published online: 29 Sep 2023

References

  • Z. Yang et al., High-performance piezoelectric energy harvesters and their applications, Joule. 2 (4), 642 (2018). DOI: 10.1016/j.joule.2018.03.011.
  • A. Kumar et al., High energy storage properties and electrical field stability of energy efficiency of (Pb0.89La0.11)(Zr0.70Ti0.30)0.97O3 relaxor ferroelectric ceramics, Electron. Mater. Lett. 15 (3), 323 (2019). DOI: 10.1007/s13391-019-00124-z.
  • P. Phaktapha et al., Temperature-dependent local structure in BaTiO3 single crystal, Integr. Ferroelectr. 177 (1), 74 (2017). DOI: 10.1080/10584587.2017.1285183.
  • A. Phuetthonglang et al., Effect of heat treatment on aging degradation of the piezoelectric properties of lead zirconate titanate, Integr. Ferroelectr. 149 (1), 75 (2013). DOI: 10.1080/10584587.2013.853570.
  • P. Parjansri et al., Improvement in the electrical properties of BCZT ceramics induced by self seeds, Appl. Phys. A 125 (6), 421 (2019). DOI: 10.1007/s00339-019-2711-9.
  • J. Rödel et al., Perspective on the development of lead-free piezoceramics, J. Am. Ceram. Soc. 92 (6), 1153 (2009). DOI: 10.1111/j.1551-2916.2009.03061.x.
  • N. Pisitpipathsin et al., Ferroelectric and piezoelectric properties of Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramic with various sintering times, Integr. Ferroelectr. 187 (1), 138 (2018). DOI: 10.1080/10584587.2018.1444886.
  • T. Chullaphan et al., Dielectric, ferroelectric, and piezoelectric properties of lead-free Ba0.95Ca0.05Ti1-xZrxO3 ceramics, Integr. Ferroelectr. 195 (1), 70 (2019). DOI: 10.1080/10584587.2019.1570037.
  • Y. Zhang et al., Unipolar fatigue behavior of BCTZ lead-free piezoelectric ceramics, J. Am. Ceram. Soc. 99 (4), 1287 (2016). DOI: 10.1111/jace.14103.
  • P. Jaimeewong et al., Comparative study of properties of BCZT ceramics prepared from conventional and sol-gel auto combustion powders, Integr. Ferroelectr. 175 (1), 25 (2016). DOI: 10.1080/10584587.2016.1199913.
  • M. E. V. Castrejón et al., Towards Lead-Free Piezoceramics: Facing a Synthesis Challenge, Materials. 9 (1), 21 (2016). DOI: 10.3390/ma9010021.
  • W. Liu et al., Large piezoelectric effect in Pb-free ceramics, Phys. Rev. Lett. 103 (25), 257602 (2009). DOI: 10.1103/PhysRevLett.103.257602.
  • P. Wang et al., Enhanced piezoelectric properties of Ba0.85Ca0.15) (Ti0.9Zr0.1) O3 lead-free ceramics by optimizing calcination and sintering temperature, J. Eur. Ceram. Soc. 31, 11 (2011). DOI: 10.1016/j.jeurceramsoc.2011.04.023.
  • S. Pojprapai et al., Frequency effect on electrical fatigue behaviour of lead zirconate titanate ceramics, Electron. Lett. 48 (17), 1062 (2012).DOI: 10.1049/el.2012.1625.
  • S. Pojprapai et al., Frequency effects on fatigue crack growth and crack tip domain-switching behavior in a lead zirconate titanate ceramic, Acta Mater. 57 (13), 3932 (2009). DOI: 10.1016/j.actamat.2009.04.054.
  • Q. Zhang et al., Electric fatigue of BCZT ceramics sintered in different atmospheres, Appl. Phys. A. 125 (11), 11 (2019). DOI: 10.1007/s00339-019-3062-2.
  • P. Pomyai et al., Electrical fatigue behavior of Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics under different oxygen concentrations, J. Eur. Ceram. Soc. 41 (4), 2497 (2021). DOI: 10.1016/j.jeurceramsoc.2020.12.016.
  • J. Glaum et al., Electric fatigue of lead-free piezoelectric materials, J. Am. Ceram. Soc. 97 (3), 665 (2014). DOI: 10.1111/jace.12811.
  • O. Namsar et al., Polarization fatigue in ferroelectric Pb(Zr0.52Ti0.48)O3-SrBi2Nb2O9 ceramics, Electron. Mater. Lett. 11 (5), 881 (2015). DOI: 10.1007/s13391-015-4494-2.
  • S. Pojprapai et al., Temperature dependence on domain switching behavior in lead zirconate titanate under electrical load via in situ neutron diffraction, J. Am. Ceram. Soc. 94 (10), 3202 (2011). DOI: 10.1111/j.1551-2916.2011.04783.x.
  • O. Namsar et al., Ferroelectric fatigue mechanism under bipolar electrical loading in KNN lead free piezoelectric ceramic, J. Mater. Sci: Mater. Electron. 29 (9), 7188 (2018). DOI: 10.1007/s10854-018-8706-z.
  • S. Pojprapai et al., The effect of temperature on bipolar electrical fatigue behavior of lead zirconate titanate ceramics, Funct. Mater. Lett. 05 (03), 1250027 (2012). DOI: 10.1142/S1793604712500270.
  • N. Buatip et al., Comparison of conventional and reactive sintering techniques for lead–free BCZT ferroelectric ceramics, Radiat. Phys. Chem. 172, 108770 (2020). DOI: 10.1016/j.radphyschem.2020.108770.
  • D. Munthala et al., In-situ X-ray absorption spectroscopy (XAS) studies of electrical field induced domain switching in BCZT ceramics, Ceram. Int. 47 (17), 25158 (2021). DOI: 10.1016/j.ceramint.2021.05.201.
  • D. Munthala et al., Angle-dependent synchrotron X-ray absorption spectroscopic structural studies on Ba0.85Ca0.15Zr0.1Ti0.9O3 ferroelectric ceramics, Scr. Mater. 188, 249 (2020). DOI: 10.1016/j.scriptamat.2020.07.021.
  • L. Daniel et al., Revisiting the blocking force test on ferroelectric ceramics using high energy x-ray diffraction, J. Appl. Phys. 117, (17) 174104 (2015). DOI: 10.1063/1.4918928.
  • J. L. Jones et al., Domain texture distributions in tetragonal lead zirconate titanate by x-ray and neutron diffraction, J. Appl. Phys. 97 (3), 034113 (2005). DOI: 10.1063/1.1849821.
  • X. Chao et al., Phase transition and improved electrical performance of Ba0.85Ca0.15Zr0.1Ti0, 9O3–Ca0.28Ba0.72Nb2O6 ceramics with high Curie temperature, Mater. Des. 89, 465 (2016). DOI: 10.1016/j.matdes.2015.10.014.
  • G. Panchal et al., Probing the effect of ferroelectric to paraelectric phase transition on the Ti-3d and O-2p hybridization in BaTiO3, J. Appl. Phys. 125 (21), 214102 (2019). DOI: 10.1063/1.5089731.
  • W. Klysubun et al., SUT-NANOTEC-SLRI beamline for X-ray absorption spectroscopy, J. Synchrotron Rad. 24 (3), 707 (2017). DOI: 10.1107/S1600577517004830.
  • V. R. Mastelaro et al., Local structure and hybridization states in Ba0.9Ca0.1Ti1 − xZrxO3 ceramic compounds: Correlation with a normal or relaxor ferroelectric character, Acta Mater. 84 (2015), 164. DOI: 10.1016/j.actamat.2014.10.059.
  • J. C. Jan et al., Effect of the Ca content on the electronic structure of Pb1 − xCaxTiO3 perovskites, Appl. Phys. Lett. 83 (16), 3311 (2003). DOI: 10.1063/1.1618375.
  • V. R. Mastelaro et al., Electronic structure of Pb1 − xBaxZr0.65Ti0.35O3 ferroelectric compounds probed by soft x-ray absorption spectroscopy, J. Phys, Condens. Matter. 19 (22), 226212 (2007). DOI: 10.1088/0953-8984/19/22/226212.
  • Z. Luo et al., Electrical fatigue-induced cracking in lead zirconate titanate piezoelectric ceramic and its influence quantitatively analyzed by refatigue method, J. Am. Ceram. Soc. 95 (8), 2593 (2012). DOI: 10.1111/j.1551-2916.2012.05232.x.
  • D. Wang et al., Influence of temperature on the electromechanical and fatigue behavior of piezoelectric ceramics, J. Appl. Phys. 83 (10), 5342 (1998). DOI: 10.1063/1.367362.
  • S. B. Park et al., Linear and nonlinear behavior of piezoelectric materials, in Smart Structures and Materials 1996: Mathematics and Control in Smart Structures (1996), Vol. 7, pp. 6. (Bellingham, WA: SPIE) DOI: 10.1117/12.240848.
  • M. Promsawat et al., Electrical fatigue behavior of lead zirconate titanate ceramic under elevated temperatures, J. Eur. Ceram. Soc. 37 (5), 2047 (2017). DOI: 10.1016/j.jeurceramsoc.-2016.12.037.
  • W. Cai et al., Effects of oxygen partial pressure on the electrical properties and phase transitions in (Ba,Ca)(Ti,Zr)O3 ceramics, J. Mater. Sci. 55 (23), 9972 (2020). DOI: 10.1007/s10853-020-04771-8.
  • A. Bootchanont et al., A, Synchrotron X-ray absorption spectroscopy study of local structure transformation behavior in perovskite Ba(Ti,Zr)O3 system, J. Alloys Compd. 616, 430 (2014). DOI: 10.1016/j.jallcom.2014.07.175.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.