Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 238, 2023 - Issue 1
25
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Correlation between Phase Evolution, Physical and Electrical Properties of (Bi0.5(Na0.80K0.20)0.5)1-x(Ba0.7Sr0.3)xTiO3 Lead-Free Piezoelectric Ceramics

, , , , & ORCID Icon
Pages 93-100 | Received 15 Jan 2023, Accepted 24 Apr 2023, Published online: 29 Sep 2023

References

  • R. T. Shrout and J. Zhang, Lead-free piezoelectric ceramics, alternatives for PZT? J. Electroceram. 19 (1), 113 (2007). DOI: 10.1007/s10832-007-9047-0.
  • P. Wannasut et al., Investigation of Bi0.5(Na0.80K0.20)0.5TiO3, LiNbO3-Ba(Ti0.90Sn0.10)O3 lead free piezoelectric ceramics, Integr. Ferroelectr. 214 (1), 98 (2021). DOI: 10.1080/10584587.2020.1857182.
  • P. Panpho et al., Improvement of phase structure and energy storage properties of [(0.72-x)Bi0.5Na0.5TiO3-0.28SrTiO3-xBaZr0.05Ti0.95O3] lead-free ceramics, Ferroelectr. 601 (1), 119 (2022). DOI: 10.1080/00150193.2022.2130766.
  • D. Panda et al., Characterization of dielectric relaxation, electrical conductivity and impedance spectroscopy of lead-free Li0.5Bi0.5Ti0.8Zr0.2O3 ceramic, Ferroelectr. 587 (1), 9 (2022). DOI: 10.1080/00150193.2022.2034408.
  • I. Coondoo, N. Panwar, and A. Kholkin, Lead-free piezoelectrics: Current status and perspectives, J. Adv. Dielect. 03 (02), 1330002 (2013). DOI: 10.1142/S2010135X13300028.
  • Z. W. Chen and J. Q. Hu, Piezoelectric and dielectric properties of Bi0.5(Na0.84K0.16)0.5TiO3-Ba(Zr0.04Ti0.96)O3 lead-free piezoelectric ceramics, J. Adv. Ceram. 107 (4), 222 (2008). DOI: 10.1179/174367608X263403.
  • K. Kumar and B. Kumar, Synthesis and characterization of Sb-doped Bi0.5(Na0.5K0.5)0.5TiO3 ceramics, Integr. Ferroelectr. 121 (1), 99 (2010). DOI: 10.1080/10584587.2010.492025.
  • H. Ogawa et al., Temperature dependence of dielectric and ferroelectric properties for (1-x)Bi0.5(Na0.8K0.2)0.5TiO3-xBaZn0.5W0.5O3 lead-free piezoelectric ceramics, Ferroelectr. 499 (1), 90 (2016). DOI: 10.1080/00150193.2016.1172962.
  • D. E. Rase and R. Roy, Phase equilibria in the system BaO-TiO2, J. Am. Ceram. Soc. 38 (3), 102 (2006). DOI: 10.1111/j.1151-2916.1955.tb14585.x.
  • H. Guo, W. Gao, and J. Yoo, Barium strontium titanate (Ba0.7Sr0.3TiO3) ferroelectric films produced by electrophoretic deposition, Curr. Appl. Phys. 4, 385 (2004).
  • W. C. Lee et al., Crystal structure, dielectric and ferroelectric properties of (Bi0.5Na0.5)TiO3-(Ba,Sr)TiO3 lead-free piezoelectric ceramics, J. Alloy. Compd. 492 (1–2), 307 (2010). DOI: 10.1016/j.jallcom.2009.11.083.
  • P. Jaita, A. Watcharapasorn, and S. Jiansirisomboon, Investigation of a new lead-free Bi0.5(Na0.40K0.10)TiO3-(Ba0.7Sr0.3)TiO3 piezoelectric ceramic, Nanoscale Res. Lett 7, 24 (2012).
  • Y. R. Zhang, J. F. Li, and B. P. Zhang, Enhancing electrical properties in NBT-KBT lead-free piezoelectric ceramics by optimizing sintering temperature, J. Am. Ceram. Soc. 91 (8), 2716 (2008). DOI: 10.1111/j.1551-2916.2008.02469.x.
  • R. S. Liu et al., Crystal and electronic structures of (Ba, Sr)TiO3, Mater. Lett. 37 (4–5), 285 (1998). DOI: 10.1016/S0167-577X(98)00107-4.
  • M. Otonicar et al., Compositional range and electrical properties of the morphotropic phase boundary in the Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3 system, J. Eur. Ceram. Soc. 30 (4), 971 (2010). DOI: 10.1016/j.jeurceramsoc.2009.10.006.
  • W. C. Lee et al., Chemical composition and tolerance factor at the morphotropic phase boundary in (Bi0.5Na0.5)TiO3-based piezoelectric ceramics, J. Euro. Ceram. Soc. 29 (8), 1443 (2009). DOI: 10.1016/j.jeurceramsoc.2008.08.028.
  • R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. A. 32 (5), 751 (1976). DOI: 10.1107/S0567739476001551.
  • A. Shukla and R. N. P. Choudhary, Study of electrical properties of La3+/Mn4+-modified PbTiO3 nanoceramics, J. Mater. Sci. 47 (13), 5074 (2012). DOI: 10.1007/s10853-012-6308-3.
  • Y. M. Li et al., Piezoelectric and dielectric properties of CeO2-doped Bi0.5Na0.44K0.06TiO3 lead-free ceramics, Ceram. Int. 33 (1), 95 (2007). DOI: 10.1016/j.ceramint.2005.08.001.
  • C. Rayssi et al., Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca0.85Er0.1Ti1−xCo4x/3O3 (0 ≤ x ≤ 0.1, RSC Adv. 8 (31), 17139 (2018). DOI: 10.1039/c8ra00794b.
  • N. Thongmee et al., Synthesis and characterization of KNN modified BNT-ST ceramics for energy storage applications, Integr. Ferroelectr. 223, 235 (2022).
  • P. Jaita et al., Dielectric, ferroelectric and electric field-induced strain behavior of Ba(Ti0.90Sn0.10)O3-modified Bi0.5(Na0.80K0.20)0.5TiO3 lead-free piezoelectrics, J. Alloys Compd. 596, 98 (2014). DOI: 10.1016/j.jallcom.2014.01.183.
  • M. N. Al-Aaraji, W. N. Hasan, and K. Al-Marzoki, Progress in lead free-relaxor ferroelectrics for energy storage applications, J. Phys. Conf. Ser. 1973 (1), 012117 (2021). DOI: 10.1088/1742-6596/1973/1/012117.
  • P. K. Panda et al., High d33 lead‑free piezoceramics: A review, J. Electron. Mater. 51 (3), 938 (2022). DOI: 10.1007/s11664-021-09346-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.