Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 239, 2023 - Issue 1
31
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Luminescence Behavior of Sm3+ Ion Doped Potassium Aluminium Gadolinium Phosphate Glasses as Orange Laser and Photonics Applications

, , &
Pages 135-148 | Received 12 Jul 2022, Accepted 27 Aug 2022, Published online: 27 Oct 2023

References

  • A. A. El-Maaref et al., Optical characterizations and Judd-Ofelt analysis of Dy3+ doped borosilicate glasses, Opt. Mater. 72, 169 (2017). DOI: 10.1016/j.optmat.2017.05.062.
  • S. Damodaraiah et al., Structural and luminescence properties of Dy3+ doped bismuth phosphate glasses for greenish yellow light applications, Opt. Mater. 67, 14 (2017). DOI: 10.1016/j.optmat.2017.03.023.
  • F. Zaman et al., Investigation of luminescence and laser transition of Dy3+ in Li2O-Gd2O3-Bi2O3-B2O3 glasses, Opt. Mater. 55, 136 (2016). DOI: 10.1016/j.optmat.2016.03.024.
  • I. Arul Rayappan, K. Selvaraju, and K. Marimuthu, Structural and luminescence investigations on Sm3+ doped sodium fluoroborate glasses containing alkali/alkaline earth metal oxides, Physica B 406 (3), 548 (2011). DOI: 10.1016/j.physb.2010.11.037.
  • S. Zulfiqar Ali Ahamed, C. Madhukar Reddy, and B. Deva Prasad Raju, Spectroscopic and laser properties of Sm3+ ions doped lithium fluoroborate glasses for efficient visible lasers, Spectrochim. Acta A Mol. Biomol. Spectrosc. 103, 246 (2013). DOI: 10.1016/j.saa.2012.11.030.
  • R. A. Talewar et al., Spectroscopic studies of Sm3+ ions doped alkaline-earth chloro borate glasses for visible photonic applications, Mater. Res. Bull 105, 45 (2018). DOI: 10.1016/j.materresbull.2018.04.033.
  • S. Q. Mawlud et al., Spectroscopic properties of Sm3+ doped sodium-tellurite glasses: Judd-Ofelt analysis, Opt. Mater. 69, 318 (2017). DOI: 10.1016/j.optmat.2017.04.022.
  • P. V. Do et al., Investigation of spectroscopy and the dual energy transfer mechanisms of Sm3+-doped telluroborate glasses, Opt. Mater. 55, 62 (2016). DOI: 10.1016/j.optmat.2016.03.023.
  • Y. Sun et al., Luminescent properties and energy transfer of Gd3+/Eu3+ co-doped cubic CaCO3, J. Lumin. 178, 307 (2016). DOI: 10.1016/j.jlumin.2016.06.009.
  • D. D. Ramteke and R. S. Gedam, Luminescence properties of Gd3+ containing glasses for ultra-violet (UV) light, J. Rare Earths 32 (5), 389 (2014). DOI: 10.1016/S1002-0721(14)60082-X.
  • M. Kasprzyk and M. Środa, Influence of Gd2O3 on thermal and spectroscopic properties of aluminosilicate glasses, J. Mol. Struct. 1161 (5), 536 (2018). DOI: 10.1016/j.molstruc.2018.02.076.
  • S. S. Babu et al., Optical properties of Dy3+-doped phosphate and fluorophosphate glasses, Opt. Mater 31 (4), 624 (2009). DOI: 10.1016/j.optmat.2008.06.019.
  • P. Lopez-Iscoa et al., Effect of the addition of Al2O3, TiO2 and ZnO on the thermal, structural and luminescence properties of Er3+-doped phosphate glasses, J. Non-Cryst. Solids 460, 161 (2017). DOI: 10.1016/j.jnoncrysol.2017.01.030.
  • F. Ahmadi, R. Hussin, and S. K. Ghoshal, Spectral characteristics of Er3+ doped magnesium zinc sulfophosphate glasses, J. Alloys Compd. 711, 94 (2017). DOI: 10.1016/j.jallcom.2017.03.212.
  • S. Rasool et al., Spectroscopic properties of Er3+-doped phosphate based glasses for broadband 1.54 mm emission, J. Mol. Struct. 1130, 837 (2017). DOI: 10.1016/j.molstruc.2016.10.090.
  • P. Kaur, D. Singh, and T. Singh, Optical, photoluminescence and physical properties of Sm3+ doped lead alumino phosphate glasses, J. Non-Cryst. Solids 452, 87 (2016). DOI: 10.1016/j.jnoncrysol.2016.08.020.
  • K. H. Mahmoud, Spectroscopic and radiative properties study of Nd3+ doped cadmium-phosphate glasses, Physica B 405 (23), 4746 (2010). DOI: 10.1016/j.physb.2010.08.069.
  • A. A. El-Maaref et al., Optical properties and radiative rates of Nd3+ doped zinc-sodium phosphate glasses, J. Rare Earths 37 (3), 253 (2019). DOI: 10.1016/j.jre.2018.06.006.
  • V. B. Sreedhar et al., Luminescence studies on Er3+ -doped zincfluorophosphate glasses for 1.53 mm laser applications, J. Mol. Struct. 1130, 1001 (2017). DOI: 10.1016/j.molstruc.2016.10.062.
  • A. A. Reddy, S. S. Babu, and G. V. Prakash, Er3+-doped phosphate glasses with improved gain characteristics for broadband optical amplifiers, Opt. Commun. 285, 5364 (2012). DOI: 10.1016/j.optcom.2012.08.031.
  • D. Kumar, S. M. Rao, and S. P. Singh, Structural, optical and thermoluminescence study of Dy3+ ion doped sodium strontium borate glass, J. Non-Cryst. Solids 464, 51 (2017). DOI: 10.1016/j.jnoncrysol.2017.03.029.
  • M. Kumar and A. S. Rao, Concentration-dependent reddish-orange photoluminescence studies of Sm3+ ions in borosilicate glasses, Opt. Mater 109, 110356 (2020). DOI: 10.1016/j.optmat.2020.110356.
  • W. T. Carnall, P. R. Fields, and K. Rajnak, Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+, J. Chem. Phys. 49 (10), 4424 (1968). DOI: 10.1063/1.1669893.
  • K. Maheshvaran and K. Marimuthu, Structural and optical investigations on Dy3+ doped boro-tellurite glasses, J. Alloys Compd. 509 (27), 7427 (2011). DOI: 10.1016/j.jallcom.2011.04.055.
  • M. Seshadri et al., Spectroscopic and laser properties of Sm3+ doped different phosphate glasses, J. Alloys Compd. 476 (1-2), 263 (2009). DOI: 10.1016/j.jallcom.2008.09.033.
  • R. Nagaraj et al., Spectroscopic properties of Sm3+ ions doped alkaliborate glasses for photonics applications, Spectrochim. Acta A Mol. Biomol. Spectrosc. 185, 139 (2017). DOI: 10.1016/j.saa.2017.05.048.
  • M. Seshadri et al., Effect of ZnO on spectroscopic properties of Sm3+ doped zinc phosphate glasses, Physica B 459, 79 (2015). DOI: 10.1016/j.physb.2014.11.016.
  • M. Mariyappan, S. Arunkumar, and K. Marimuthu, Effect of Bi2O3 on the structural and spectroscopic properties of Sm3+ ions doped sodium fluoroborate glasses, J. Mol. Struct. 1105, 214 (2016). DOI: 10.1016/j.molstruc.2015.10.043.
  • K. Nanda et al., Concentration dependence of intensity parameters and radiative properties of Sm3+ ions doped in BaO-ZnO-B2O3 glasses, J. Alloys Compd. 676, 521 (2016). DOI: 10.1016/j.jallcom.2016.03.112.
  • K. K. Kumar, and C. K. Jayasankar, Visible luminescence of Sm3+:K–Ca–Li fluorophosphate glasses, J. Mol. Struct. 1074, 496 (2014). DOI: 10.1016/j.molstruc.2014.06.022.
  • B. C. Jamalaiah, M. V. Vijaya Kumar, and K. R. Gopal, Fluorescence properties and energy transfer mechanism of Sm3+ ion in lead telluroborate glasses, Opt. Mater. 33 (11), 1643 (2011). DOI: 10.1016/j.optmat.2011.04.030.
  • P. Karthikeyan et al., Modifier effect on the spectroscopic properties of tellurofluoroborate glasses containing Sm3+ ions, J. Lumin. 178, 43 (2016). DOI: 10.1016/j.jlumin.2016.05.037.
  • G. Venkataiah et al., Concentration dependent luminescence properties of Sm3+-ions in tellurite–tungsten–zirconium glasses, Opt. Mater 40, 26 (2015). DOI: 10.1016/j.optmat.2014.11.042.
  • S. S. Sundari et al., Composition dependent structural and optical properties of Sm3+-doped sodium borate and sodium fluoroborate glasses, J. Lumin. 130 (7), 1313 (2010). DOI: 10.1016/j.jlumin.2010.02.046.
  • A. Wagh et al., The effect of 1.25 MeV γ rays on Sm3+ doped lead fluoroborate glasses for reddish orange laser and radiation shielding applications, J. Lumin. 199, 87 (2018). DOI: 10.1016/j.jlumin.2018.03.0163.
  • D. D. Ramteke et al., Luminescence dynamics and investigation of Judd-Ofelt intensity parameters of Sm3+ ion containing glasses, Opt. Mater. 64, 171 (2017). DOI: 10.1016/j.optmat.2016.12.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.