Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 239, 2023 - Issue 1
32
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Improvement of Luminescence Performance by the Addition of KF in the Eu2O3 Doped Li2O-AlF3-NaF-P2O5 Glass for Highly Efficient Reddish-Orange Laser Application

, , , ORCID Icon &
Pages 167-182 | Received 16 Jul 2022, Accepted 26 Aug 2022, Published online: 27 Oct 2023

References

  • K. N. Kumar et al., Energy transfer (In3+→ Eu3+) based polyvinyl alcohol polymer composites for bright red luminescence, Opt. Mater. (Amst.) 70, 41 (2017). DOI: 10.1016/j.optmat.2017.05.012.
  • D. D. Ramteke et al., Luminescence dynamics and investigation of Judd-Ofelt intensity parameters of Sm3+ ion containing glasses, Opt. Mater. (Amst.) 64, 171 (2017). DOI: 10.1016/j.optmat.2016.12.009.
  • N. N. B et al., Judd-Ofelt analysis and luminescence studies on Dy3+ -doped different phosphate glasses for white light emitting material applications, Optik (Stuttg) 192 (June), 162980 (2019). DOI: 10.1016/j.ijleo.2019.162980.
  • M. Saad et al., Ag nanoparticles induced luminescence enhancement of Eu3+-doped phosphate glasses, J. Alloys Compd. 705, 550 (2017). DOI: 10.1016/j.jallcom.2016.12.410.
  • L. Xia et al., Preparation and luminescence properties of Eu3+ -doped calcium bismuth borate red-light-emitting glasses for WLEDs, J. Non Cryst. Solids 476 (July), 151 (2017). DOI: 10.1016/j.jnoncrysol.2017.09.049.
  • S. Maisarah et al., Structural analysis and luminescence studies of Eu3+ doped magnesium borophosphate ceramic, 16 (4), 524 (2020).
  • J. Rajagukguk et al., Investigation of Eu3+-doped oxy-fluoride phosphate glass for red laser gain medium application investigation of Eu3+ doped oxy-fluoride phosphate glass, Integr. Ferroelectr. 225 (1), 80 (2022). DOI: 10.1080/10584587.2022.2054058.
  • C. S. S. Sarumaha et al., White light emission of Dy3+ doped oxy-fluoride phosphate glass system for active laser medium, Integr. Ferroelectr. 224 (1), 1 (2022). DOI: 10.1080/10584587.2022.2035591.
  • J. Rajagukguk et al., Energy transfer and broad-band luminescence of Nd3+-Er3+ co-doped Lithium Fluorophosphate (LFP) glasses, Opt. Mater. (Amst.) 125, 112007 (2022). DOI: 10.1016/j.optmat.2022.112007.
  • J. H. Panggabean et al., The effect of calcium fluoride in lithium phosphate oxide (LPO) doped with Sm3+ content, Integr. Ferroelectr. 224 (1), 110 (2022). DOI: 10.1080/10584587.2022.2035601.
  • J. Rajagukguk et al., Radio and photo luminescence of Dy3+ doped lithium fluorophosphate scintillating glass, Radiat. Phys. Chem. 185 (May), 109520 (2021). DOI: 10.1016/j.radphyschem.2021.109520.
  • M. Shoaib et al., The physical and luminescent properties of Dy3+ doped phosphate glasses for solid states lighting applications, Suranaree J. Sci. Technol. 27 (3), 1 (2020).
  • M. Sreenivasulu, and A. S. Rao, Absorption and emission spectra of Pr3+-doped mixed alkali fluorophosphate optical glasses, J. Mater. Sci. Lett. 20 (8), 737 (2001). DOI: 10.1023/A:1010971327076.
  • N. Chanthima et al., Spectroscopic properties of samarium doped potassium aluminium phosphate glasses, Suranaree J. Sci.  Technol. 27 (2), 1 (2020).
  • S. Mohan et al., Spectroscopic investigations of Sm3+ -doped lead alumino-borate glasses containing zinc, lithium and barium oxides, J. Alloys Compd. 763, 486 (2018). DOI: 10.1016/j.jallcom.2018.05.319.
  • M. Shoaib et al., Intriguing energy transfer mechanism in oxide and oxy-fluoride phosphate glasses, Opt. Mater. (Amst.) 88, 429 (2019). DOI: 10.1016/j.optmat.2018.11.059.
  • M. Shoaib et al., Comparative study of Sm3+ ions doped phosphate based oxide and oxy-fluoride glasses for solid state lighting applications, J. Rare Earths 37 (4), 374 (2019). DOI: 10.1016/j.jre.2018.09.008.
  • P. Y. Shih, Thermal, chemical and structural characteristics of erbium-doped sodium phosphate glasses, Mater. Chem. Phys. 84 (1), 151 (2004). DOI: 10.1016/j.matchemphys.2003.11.016.
  • J. Rajagukguk et al., Structural, spectroscopic and optical gain of Nd3+ doped fluorophosphate glasses for solid state laser application, J. Lumin. 216, 116738, 2019, DOI: 10.1016/j.jlumin.2019.116738.
  • S. Ravangvong et al., Effect of sodium oxide and sodium fluoride in gadolinium phosphate glasses doped with Eu2O3 content, J. Lumin. 219, 116950 (2020). DOI: 10.1016/j.jlumin.2019.116950.
  • N. A. El-Alaily, O. I. Sallam, and F. M. Ezz-Eldin, Effect of gamma irradiation on some spectroscopic properties of phosphate glass containing samarium ions, J. Non Cryst. Solids 523, 119604 (2019). DOI: 10.1016/j.jnoncrysol.2019.119604.
  • W. T. Carnall, P. R. Fields, K. Rajnak, Electronic energy levels of the trivalent lanthanide aquo ions. IV. Eu3+. J. Chem. Phys. 49 (10), 4450–4455 (1968). DOI: 10.1063/1.1669896.
  • S. S. Babu et al., Optical absorption and photoluminescence studies of Eu3+-doped phosphate and fluorophosphate glasses, J. Lumin. 126 (1), 109 (2007). DOI: 10.1016/j.jlumin.2006.05.010.
  • A. Ichoja, S. Hashim, and S. K. Ghoshal, Judd − Ofelt calculations for spectroscopic characteristics of Dy3+-activated strontium magnesium borate glass, Optik (Stuttg) 218, 165001 (2020). DOI: 10.1016/j.ijleo.2020.165001.
  • G. S. Opelt, Intensities of crystal spectra of rare-earth ions, J. Chem. Phys. 37 (3), 511 (1962). DOI: 10.1063/1.1701366.
  • C. K. Jørgensen, and B. R. Judd, Hypersensitive pseudoquadrupole transitions in lanthanides, Mol. Phys. 8 (3), 281 (1964). DOI: 10.1080/00268976400100321.
  • S. N. Rasool, L. Rama Moorthy, and C. K. Jayasankar, Optical and luminescence properties of Eu3+-doped phosphate based glasses, Mater. Express 3 (3), 231 (2013). DOI: 10.1166/mex.2013.1123.
  • B. N. K. Reddy et al., Optical characterization of Eu3+ ion doped alkali oxide modified borosilicate glasses for red laser and display device applications, Ceram. Int. 43 (12), 8886 (2017). DOI: 10.1016/j.ceramint.2017.04.024.
  • S. Selvi et al., Red light generation through the lead boro-telluro-phosphate glasses activated by Eu3+ ions, J. Mol. Struct. 1119, 276 (2016). DOI: 10.1016/j.molstruc.2016.04.073.
  • M. Haouari et al., Structural and spectroscopic properties of Eu3+ doped tellurite glass containing silver nanoparticles, J. Alloys Compd. 743, 586 (2018). DOI: 10.1016/j.jallcom.2018.01.192.
  • M. De, S. Sharma, and S. Jana, Enhancement of 5D0→7F2 red emission of Eu3+ incorporated in lead sodium phosphate glass matrix, Physica B: Condensed Matter 556, 131 (2019). DOI: 10.1016/j.physb.2018.12.020.
  • A. Maity et al., Spectroscopic investigation on Europium (Eu3+) doped strontium zinc lead phosphate glasses with varied ZnO and PbO compositions, J. Non Cryst. Solids 550 (July), 120322 (2020). DOI: 10.1016/j.jnoncrysol.2020.120322.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.