Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 239, 2023 - Issue 1
34
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Influence of Calcium Fluoride on the Radiative Properties of Sm3+ Doped Zinc Borophosphate Glasses

ORCID Icon, , , &
Pages 183-196 | Received 12 Jul 2022, Accepted 22 Aug 2022, Published online: 27 Oct 2023

References

  • M. Vijayakumar, and K. Marimuthu, Effect of Tb3+ concentration on Sm3+ doped leadfluoro-borophosphate glasses for WLED applications, J. Non-Cryst. Solids 447, 45 (2016). DOI: 10.1016/j.jnoncrysol.2016.05.028.
  • K. Srinivasulu et al., Structural investigations on sodium-lead borophosphate glasses doped with vanadyl ions, J. Phys. Chem. A 116 (14), 3547 (2012). DOI: 10.1021/jp210398k.
  • J. Rajagukguk et al., Structural and spectroscopic properties of Er3+ doped sodium lithium borate glasses. Spectrochim. Acta. A, 223, 117342 (2019). DOI: 10.1016/j.saa.2019.117342.
  • N. S. Prabhu et al., Investigations on the physical, structural, optical and photoluminescence behavior of Er3+ ions in lithium zinc fluoroborate glass system, Infrared Phys. Technol. 98, 7 (2019). DOI: 10.1016/j.infrared.2019.02.005.
  • L. Shamshad et al., Effect of alkaline earth oxides on the physical and spectroscopic properties of Dy3+- doped Li2O-B2O3 glasses for white emitting material application, Opt. Mater. 64, 268 (2017). DOI: 10.1016/j.optmat.2016.12.027.
  • C. B. A. Devi et al., Spectroscopic studies and lasing potentialities of Sm3+ ions doped single alkali and mixed alkali fluoro tungstentellurite glasses, Opt. Laser Technol. 111 (2018), 176 (2019). DOI: 10.1016/j.optlastec.2018.09.051.
  • J. H. Panggabean et al., The effect of calcium fluoride in lithium phosphate oxide (LPO) doped with Sm3+ content, Integr. Ferroelectr. 224 (1), 110 (2022). DOI: 10.1080/10584587.2022.2035601.
  • J. Hutahaean et al., The effect of sodium fluoride in lithium fluorophosphate (LFP) glasses doped with Nd2O3 Ion, Integr. Ferroelectr. 224 (1), 100 (2022). DOI: 10.1080/10584587.2022.2035600.
  • V. Martin et al., Samarium-doped oxyfluoride borophosphate glasses for x-ray dosimetry in microbeam radiation therapy, J. Non-Cryst. Solids 377, 137 (2013). DOI: 10.1016/j.jnoncrysol.2012.12.015.
  • B. R. Venkateswara Rao et al., Spectroscopic Investigations on Pr3+ doped alkali fluoroborophosphate glasses, J. Nanosci. Nanotechnol. 04 (02), 360 (2018). DOI: 10.30799/jnst.sp202.18040207.
  • M. Shoaib et al., Intriguing energy transfer mechanism in oxide and oxy-fluoride phosphate glasses, Opt. Mater. 88 (2018), 429 (2019). DOI: 10.1016/j.optmat.2018.11.059.
  • N. S. Prabhu et al., Physical, structural and optical properties of Sm3+ doped lithium zinc alumino borate glasses, J. Non-Cryst. Solids 515, 116 (2019). DOI: 10.1016/j.jnoncrysol.2019.04.015.
  • J. Rajagukguk et al., Synthesis and structural properties of Sm3+ doped sodium lithium zinc lead borate glasses, J. Phys: Conf. Ser. 1811 (1), 012112 (2021). DOI: 10.1088/1742-6596/1811/1/012112.
  • N. Saad et al., Structural and optical properties of Cr3+ embedded in a P2O5–B2O3–ZnO–BaF2–AlF3 fluoroborophosphate glasses, Mater. Chem. Phys. 212, 461 (2018). DOI: 10.1016/j.matchemphys.2018.03.074.
  • S. Selvi et al., Effect of PbO on the B2O3–TeO2–P2O5–BaO–CdO–Sm2O3 glasses – structural and optical investigations, J. Non-Cryst. Solids 461, 35 (2017). DOI: 10.1016/j.jnoncrysol.2017.01.028.
  • C. R. Kesavulu et al., Physical, vibrational, optical and luminescence investigations of Dy3+-doped yttrium calcium silicoborate glasses for cool white LED applications, J. Alloys Compd. 726, 1062 (2017). DOI: 10.1016/j.jallcom.2017.08.091.
  • M. Vijayakumar et al., Structural and optical properties of Dy3+ doped Aluminofluoroborophosphate glasses for white light applications, Opt. Mater. 37 (C), 695 (2014). DOI: 10.1016/j.optmat.2014.08.015.
  • M. Sirait et al., Synthesis of hydroxyapatite from limestone by using precipitation method, J. Phys: Conf. Ser. 1462 (1), 012058 (2020). DOI: 10.1088/1742-6596/1462/1/012058.
  • S. Damodaraiah et al., Structural and luminescence properties of Sm3 -doped bismuth phosphate glass for orange-red photonic applications, Luminescence 33 (3), 594 (2018). DOI: 10.1002/bio.3451.
  • C. S. Dwaraka Viswanath, and C. K. Jayasankar, Photoluminescence, γ-irradiation and X-ray induced luminescence studies of Sm3+-doped oxyfluorosilicate glasses and glass-ceramics, Ceram. Int. 44 (6), 6104 (2018). DOI: 10.1016/j.ceramint.2017.12.243.
  • M. Shoaib et al., Comparative study of Sm3+ ions doped phosphate based oxide and oxy-fluoride glasses for solid state lighting applications, J. Rare Earths 37 (4), 374 (2019). DOI: 10.1016/j.jre.2018.09.008.
  • S. Mohan et al., Structural and luminescence properties of samarium doped lead alumino borate glasses, Opt. Mater. 73, 223 (2017). DOI: 10.1016/j.optmat.2017.08.015.
  • V. Thomas et al., Optical analysis of samarium doped sodium bismuth silicate glass, Spectrochim. Acta. A Mol. Biomol. Spectrosc. 171, 144 (2017). DOI: 10.1016/j.saa.2016.07.055.
  • H. Largot et al., Spectroscopic investigations of Sm3+ doped phosphate glasses: Judd-Ofelt analysis, Phys. B 552 (2018), 184 (2019). DOI: 10.1016/j.physb.2018.10.010.
  • P. R. Rani et al., Structural, absorption and photoluminescence studies of Sm3+ ions doped barium lead alumino fluoro borate glasses for optoelectronic device applications, Mater. Res. Bull. 110 (2018), 159 (2019). DOI: 10.1016/j.materresbull.2018.10.033.
  • G. Neelima et al., Investigation of spectroscopic properties of Sm3+-doped oxyfluorophosphate glasses for laser and display applications, Mater. Res. Bull. 110 (2018), 223 (2019). DOI: 10.1016/j.materresbull.2018.10.026.
  • J. Rajagukguk et al., Energy transfer and broad-band luminescence of Nd3+-Er3+ co-doped lithium fluorophosphate (LFP) glasses, Opt. Mater. 125, 112007 (2022). DOI: 10.1016/j.optmat.2022.112007.
  • J. Rajagukguk et al., Structural and optical characteristics of Eu3+ ions in sodium-lead-zinc-lithium-borate glass system, J. Mol. Struct. 1121, 180 (2016). DOI: 10.1016/j.molstruc.2016.05.048.
  • S. Shanmuga Sundari et al., Composition dependent structural and optical properties of Sm3+-doped sodium borate and sodium fluoroborate glasses, J. Lumin. 130 (7), 1313 (2010). DOI: 10.1016/j.jlumin.2010.02.046.
  • J. Rajagukguk et al., Structural, spectroscopic and optical gain of Nd3+ doped fl uorophosphate glasses for solid state laser application. J. Lumin., 216, 116738 (2019). DOI: 10.1016/j.jlumin.2019.116738.
  • P. K. Pothuganti et al., Physical and optical properties of borobismuthate glasses containing vanadium oxide, Glass Phys. Chem. 46 (2), 146 (2020). DOI: 10.1134/S1087659620020078.
  • Y. A. Yamusa et al., Effect of Dy3+ on the physical, optical and radiative properties of CaSO4–B2O3–P2O5 glasses, Indian J. Phys. 93 (1), 15 (2019). DOI: 10.1007/s12648-018-1268-3.
  • J. Rajagukguk et al., Structural and optical properties of Nd3+ doped Na2O-PbO-ZnO-Li2O-B2O3 glasses system. Key Eng. Mater. 675–676, 424 (2016). DOI: 10.4028/www.scientific.net/KEM.675-676.424.
  • I. I. Kindrat et al., Judd-Ofelt analysis and radiative properties of the Sm3+ centres in Li2B4O7, CaB4O7, and LiCaBO3 glasses, Opt. Mater. 49, 241 (2015). DOI: 10.1016/j.optmat.2015.09.024.
  • D. Rajagukguk et al., Spectroscopic and radiative properties of Sm3+ doped sodium-lead-zinc-lithium- borate glasses, Spektra. 6 (3), 137 (2021). DOI: 10.21009/SPEKTRA.063.01.
  • J. Rajagukguk et al., Emission cross section and optical gain of 1.06mm laser Nd3+ doped borate glasses, Mater. Today Proc. 5 (7), 14998 (2018). DOI: 10.1016/j.matpr.2018.04.045.
  • C. Basavapoornima, and C. K. Jayasankar, Spectroscopic and photoluminescence properties of Sm3+ ions in Pb-K-Al-Na phosphate glasses for efficient visible lasers, J. Lumin. 153, 233 (2014). DOI: 10.1016/j.jlumin.2014.03.006.
  • J. Rajagukguk et al., Investigation of dy3+ ion doped borate glasses and their potential for wled and laser application, J. Eng. Technol. Sci. 52 (6), 891 (2020). DOI: 10.5614/j.eng.technol.sci.2020.52.6.9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.