Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 239, 2023 - Issue 1
36
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Sintering Temperature Effect on Phase Formation, Microstructure and Electrical Properties of Modified KNLNTS Solid Solution Prepared via the Solid-State Combustion Technique

, , , &
Pages 210-223 | Received 11 Mar 2023, Accepted 24 Apr 2023, Published online: 27 Oct 2023

References

  • Y. Shukai, F. Jerry, and L. Li, Effects of Ca substitution on structure, piezoelectric properties, and relaxor behavior of lead-free Ba(Ti0.9Zr0.1)O3 piezoelectric ceramics, J Alloy. Compd. 541, 396 (2012). DOI: 10.1016/j.jallcom.2012.06.084.
  • J. Xiang-Ping et al., Effects of Mn-doping on the properties of (Ba0.92Ca0.08)(Ti0.95Zr0.05)O3 lead-free ceramics, J. Alloy. Compd. 574, 88 (2013). DOI: 10.1016/j.jallcom.2013.04.048.
  • P. K. Panda, Review: Environmental friendly lead-free piezoelectric materials, J. Mater. Sci. 44 (19), 5049 (2009). DOI: 10.1007/s10853-009-3643-0.
  • T. Takenaka, and H. Nagata, Current status and prospects of lead-free piezoelectric ceramics, J. Eur. Ceram. Soc. 25 (12), 2693 (2005). DOI: 10.1016/j.jeurceramsoc.2005.03.125.
  • J. G. Wu, D. Q. Xiao, and J. G. Zhu, Potassium-sodium niobate lead-free piezoelectric materials: Past, present, and future of phase boundaries, Chem. Rev. 115 (7), 2559 (2015). DOI: 10.1021/cr5006809.
  • Y. Huan et al., Low temperature sintering and enhanced piezoelectricity of lead-free (Na0.52K0.4425Li0.0375)(Nb0.86Ta0.06Sb0.08)O3 ceramics prepared from nano-powders, J. Am. Ceram. Soc. 96 (11), 3470 (2013). DOI: 10.1111/jace.12499.
  • D. Lv, and R. Z. Zuo, Evolution of crystallographic grain orientation and anisotropic properties of (K0.5Na0.5)NbO3 ceramics using BaTiO3 templates by reactive template grain growth, J. Alloys. Compd. 560, 62 (2013). DOI: 10.1016/j.jallcom.2013.01.048.
  • W. F. Liang et al., Effect of the addition of CaZrO3 and LiNbO3 on the phase transitions and piezoelectric properties of K0.5Na0.5NbO3 lead-free ceramics, J. Am. Ceram. Soc. 94 (12), 4317 (2011). DOI: 10.1111/j.1551-2916.2011.04660.x.
  • X. P. Wang et al., Compositional dependence of phase structure and electrical properties in (K0.5Na0.5)00.97Bi0.01(Nb1-xZrx)O3 lead-free ceramics, Ceram. Int. 39 (7), 8021 (2013). DOI: 10.1016/j.ceramint.2013.03.071.
  • E. Hollenstein et al., Piezoelectric properties of Li and Ta modified (K0.5Na0.5)NbO3 ceramics, Appl. Phys. Let. 87 (18), 182905 (2005). DOI: 10.1063/1.2123387.
  • Y. Huan et al., Theoretical prediction and experimental validation of enhancing the piezoelectric properties of (K, Na)NbO3 modified by Li, Ta, and Sb according to the linear combination rule, J. Am. Ceram. Soc. 97 (11), 3524 (2014). DOI: 10.1111/jace.13131.
  • P. Palei, P. Kumar, and D. K. Agrawal, Structural and electrical properties of microwave processed Ag modified KNN-LS ceramics, J. Microw. Power. Electromagn. Energy. 46 (2), 76 (2012). DOI: 10.1080/08327823.2012.11689826.
  • C. Wang et al., Sol–gel synthesis and characterization of lead-free LNKN nano crystalline powder, J. Cryst. Growth 310 (22), 4635 (2008). DOI: 10.1016/j.jcrysgro.2008.08.042.
  • J. F. Li et al., Ferroelectric and piezoelectric properties of fine-grained Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering, J. Am. Ceramic. Soc. 89 (2), 706 (2006). DOI: 10.1111/j.1551-2916.2005.00743.x.
  • K. Mathrmool, T. Udeye, and T. Bongkarn, Low temperature fabrication of lead-free piezoelectric KNLNTS ceramics by the solid state combustion technique, Ferroelectrics. 518 (1), 31 (2017). DOI: 10.1080/00150193.2017.1360118.
  • R. Sumang et al., High densification and dielectric properties of lead-free (K0.5Na0.5)NbO3 piezoelectric ceramics with optimum excess Na2O and K2O contents, Ceram. Int. 41, S136 (2015). DOI: 10.1016/j.ceramint.2015.03.228.
  • S. H. Park et al., Microstructure and piezoelectric properties of ZnO-added (Na0.5K0.5)NbO3, Jpn. J. Appl. Phys. 43 (8B), L1072 (2004). DOI: 10.1143/JJAP.43.L1072.
  • Z. Li et al., Dielectric and piezoelectric properties of ZnO and SnO2 co-doping K0.5Na0.5NbO3 ceramics, Physica. B. 405 (1), 296 (2010). DOI: 10.1016/j.physb.2009.08.080.
  • I.-Y. Kang et al., Low temperature sintering of ZnO and MnO2-added (Na0.5K0.5)NbO3 ceramics, J. Eur. Ceram. Soc. 32 (10), 2381 (2012). DOI: 10.1016/j.jeurceramsoc.2012.01.030.
  • H. Y. Park et al., Effect of CuO on the sintering temperature and piezoelectric properties of (Na0.5K0.5)NbO3 lead-free piezoelectric ceramics, J. Am. Ceram. Soc. 91 (7), 2374 (2008). DOI: 10.1111/j.1551-2916.2008.02408.x.
  • G.-M. Lee, J.-H. Yoo, and J.-Y. Lee, Dielectric and piezoelectric properties of low temperature sintering (Na, K, Li)(Nb, Sb, Ta)O3 ceramicsd with SnO2, J. Korean Inst. Electr. Electron. Mater. Eng. 28 (11), 690 (2015). DOI: 10.4313/JKEM.2015.28.11.690.
  • Y. Saito et al., Lead-free piezoceramics, Nature. 432 (7013), 84 (2004). DOI: 10.1038/nature03028.
  • W. Yansen et al., Rietveld analysis and multiferroic properties of Fe doped Ba0.95Bi0.05TiO3 ceramics, Curr. Appl. Phys. 15 (2), 120 (2015). DOI: 10.1016/j.cap.2014.12.001.
  • V. S. Marques et al., Synthesis of (Ca,Nd)TiO3 powders by complex polymerization, Rietveld refinement and optical properties, Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 74 (5), 1050 (2009). DOI: 10.1016/j.saa.2009.08.049.
  • J. Zhou et al., Composition-insensitive enhanced piezoelectric properties in SrZrO3 modified (K, Na)NbO3-based lead-free ceramics, J. Electroceram. 44 (1–2), 95 (2020). DOI: 10.1007/s10832-019-00195-2.
  • Z. Peng et al., A new family of high temperature stability and ultra-fast charge–discharge KNN-based lead-free ceramics, J. Mater. Sci. 57 (22), 9992 (2022). DOI: 10.1007/s10853-022-07265-x.
  • J. Wu, High piezoelectricity in low-temperature sintering potassium–sodium niobate-based lead-free ceramics, RSC Adv. 4 (96), 53490 (2014). DOI: 10.1039/C4RA08400D.
  • S. Yotthuan et al., Phase ratio, dielectric, ferroelectric, and magnetic properties of BCTZ ceramics with CuO doping synthesized by the solid state combustion technique, Phys. Status. Solidi. A. 216 (11), 1800803 (2019). DOI: 10.1002/pssa.201800803.
  • H. E. Mgbemere, T. T. Akano, and G. A. Schneider, Effect of bismuth titanate on the properties of potassium sodium niobate-based ceramics, J. Asia. Ceram. Soc. 5 (1), 49 (2017). DOI: 10.1016/j.jascer.2016.12.006.
  • I. M. Reaney, Octahedral tilting, domain structure and piezoelectricity in perovskites and related ceramics, J. Electroceram. 19 (1), 3 (2007). DOI: 10.1007/s10832-007-9041-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.