Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 239, 2023 - Issue 1
69
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of the Firing Temperatures on the Phase Evolution and Electrical Properties of 0.85[0.94Bi0.5Na0.5TiO3-0.06BaTiO3]-0.15[Na0.73Bi0.09NbO3] Ceramics Synthesized via the Solid-State Combustion Method

, , , , , , & show all
Pages 248-264 | Received 12 Mar 2023, Accepted 24 Apr 2023, Published online: 27 Oct 2023

References

  • J. S. Forrester et al., Synthesis of PbTiO3 ceramics using mechanical alloying and solid-state sintering, J. Solid State Chem. 177 (10), 3553 (2004). DOI: 10.1016/j.jssc.2004.06.005.
  • Ľ. Medvecký, M. Kmecová, and K. Saksl, Study of PbZr0.53Ti0.47O3 solid solution formation by interaction of perovskite phases, J. Eur. Ceram. Soc. 27 (4), 2031 (2007). DOI: 10.1016/j.jeurceramsoc.2006.05.100.
  • J. de Los S. Guerra, M. H. Lente, and J. A. Eiras, Non-linear dielectric properties in base-PMN relaxor ferroelectric, J. Eur. Ceram. Soc. 27 (13–15), 4033 (2007). DOI: 10.1016/j.jeurceramsoc.2007.02.097.
  • Y. Saito et al., Lead-free piezoelectric, Nature. 432 (7013), 84 (2004). DOI: 10.1038/nature03028.
  • Y. Hao et al., Magnetron sputtering electrode on the BaTiO3-based PTCR ceramics and the effect of heat treatment on their properties, Mater. Sci. Eng. B. 99 (1–3), 516 (2003). DOI: 10.1016/S0921-5107(02)00519-6.
  • T. Takenaka, K. Maruyama, and K. Sakata, Bi0.5Na0.5TiO3-BaTiO3 system for lead-free piezoelectric ceramics, Jpn. J. Appl. Phys. 30 (9S), 2236 (1991). DOI: 10.1143/JJAP.30.2236.
  • F. Gao et al., Energy-storage properties of 0.89Bi0.5Na0.5TiO3-0.06BaTiO3-0.05K0.5Na0.5NbO3 lead-free anti-ferroelectric ceramics, J. Am. Ceram. Soc. 94 (12), 4382 (2011). DOI: 10.1111/j.1551-2916.2011.04731.x.
  • B. Wang et al., Energy-storage properties of (1-x) Bi0.47Na0.47Ba0.06TiO3-xKNbO3 lead-free ceramics, J. Alloy. Compd. 585, 14 (2014). DOI: 10.1016/j.jallcom.2013.09.052.
  • J. Ye et al., Enhanced energy-storage properties of SrTiO3 doped (Bi1/2Na1/2) TiO3-(Bi1/2K1/2) TiO3 lead-free anti-ferroelectric ceramics, J. Mater. Sci: Mater Electron. 25 (10), 4632 (2014). DOI: 10.1007/s10854-014-2215-5.
  • J. Hao et al., Enhanced energy-storage properties of (1-x)[(1-y)(Bi0.5Na0.5)TiO3-y(Bi0.5K, 0.5)TiO3]-x(K0.5Na0.5)NbO3 lead-free ceramics, Solid State Commun. 204, 19 (2015). DOI: 10.1016/j.ssc.2014.12.004.
  • Q. Xu et al., Dielectric behavior and impedance spectroscopy in lead-free BNT-BT-NBN perovskite ceramics for energy storage, Ceram. Int. 42 (8), 9728 (2016). DOI: 10.1016/j.ceramint.2016.03.062.
  • K. Mathrmool, T. Udeye, and T. Bongkarn, Low temperature fabrication of lead-free piezoelectric KNLNTS ceramics by the solid-state combustion technique, Ferroelect. 518 (1), 31 (2017). DOI: 10.1080/00150193.2017.1360118.
  • S. Yotthuan, C. Kornphom, and T. Bongkarn, The effect of firing conditions on phase formation, microstructure and dielectric properties of BNKTNb-LSb ceramics prepared via the combustion technique, Phase Trans. 88 (10), 1035 (2015). DOI: 10.1080/01411594.2015.1010202.
  • C. Kornphom et al., The influence of the firing temperatures on the phase evolution, microstructure, dielectric and strain responses of BCTS ceramics prepared by the solid-State combustion technique, Phys. Status Solidi A. 215 (21), 1701058 (2018). DOI: 10.1002/pssa.201701058.
  • C. Kornphom et al., Phase structures, PPT region and electrical properties of new lead-free KNLNTS-BCTZ ceramics fabricated via the solid-state combustion technique, Ceram. Int. 43, S182 (2017). DOI: 10.1016/j.ceramint.2017.05.180.
  • P. Thawong et al., Effect of firing temperatures on properties of BNT-BCTZ-0.007 mol% BFCO lead free piezoelectric ceramics synthesized by the solid state combustion method, Ceram. Int. 43, S172 (2017). DOI: 10.1016/j.ceramint.2017.05.292.
  • T. Bongkarn et al., Excellent piezoelectric and ferroelectric properties of KNLNTS ceramics with Fe2O3 doping synthesized by the solid-state combustion technique, J. Alloys Compd. 682, 14 (2016). DOI: 10.1016/j.jallcom.2016.04.285.
  • C. Kornphom, A. Laowanidwatana, and T. Bongkarn, The effects of sintering temperature and content of x on phase formation, microstructure and dielectric properties of (1-x)(Bi0.4871Na0.4871La0.0172TiO3)-x(BaZr0.05Ti0.95O3) ceramics prepared via the combustion technique, Ceram. Int. 39, 421 (2013). DOI: 10.1016/j.ceramint.2012.10.106.
  • C. Kornphom, N. Vittayakorn, and T. Bongkarn, Low firing temperatures and high ferroelectric properties of (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 lead-free ceramics synthesized by the combustion technique, Ferroelect. 491 (1), 44 (2016). DOI: 10.1080/00150193.2015.1070239.
  • P. Bhupaijit et al., Structural, microstructure and electrical properties of La2O3-doped Bi0.5(Na0.68K0.22Li0.1)0.5TiO3 lead-free piezoelectric ceramics synthesized by the combustion technique, Ceram. Int. 41, S81 (2015). DOI: 10.1016/j.ceramint.2015.03.226.
  • P. Thawong et al., Phase evolution and electrical properties of a new system of (1-x)[BNT-BKT-KNN]-xBCTZ lead-free piezoelectric ceramics synthesized by the solid-state combustion technique, Phase Trans. 89 (3), 232 (2016). DOI: 10.1080/01411594.2015.1071369.
  • C. Wattanawikkam, N. Vittayakorn, and T. Bongkarn, Low temperature fabrication of lead-free KNN-LS-BS ceramics via the combustion method, Ceram. Int. 39, S399 (2013). DOI: 10.1016/j.ceramint.2012.10.102.
  • S. Monica et al., Rietveld refinement and impedance spectroscopy of calcium titanate, Curr. Appl. Phys. 12, 1429 (2012). DOI: 10.1016/j.cap.2012.03.034.
  • H. Jianfeng et al., A general mechanism of grain growth-I: Theory, J. Mater. 7 (5), 1007 (2021). DOI: 10.1016/j.jmat.2021.02.008.
  • P. Ketsuwan et al., Electrical conductivity and dielectric chromium doped lead zirconate titanate ceramic, Ferroelect. 382 (1), 49 (2009). DOI: 10.1080/00150190902881546.
  • H. Dai et al., Structural and electric properties of polycrystalline Bi1-xErxFeO3 ceramics, Ceram. Int. 39 (5), 5373 (2013). DOI: 10.1016/j.ceramint.2012.12.043.
  • C. Ma et al., Domain structure-dielectric property relationship in lead-free (1-x)(Bi1/2Na1/2)TiO3-xBaTiO3 ceramics, J. Appl. Phys. 108, 104105 (2010). DOI: 10.1063/1.3514093.
  • P., Palei, P., Kumar, Sonia, Dielectric, ferroelectric, and piezoelectric properties of (1-x) [K0.5Na0.5NbO3]-x[LiSbO3] ceramics, J. Phys. Chem. Solids. 73 (7), 827–833 (2012). DOI: 10.1016/j.jpcs.2012.02.008.
  • H. Zhu et al., Structure and electrical properties of SrZrO3-modified (K,Na,Li)(Nb,Ta)O3 lead-free piezoelectric ceramics, J. Mater. Sci: Mater. Electron. 29 (5), 3905 (2018). DOI: 10.1007/s10854-017-8329-9.
  • H. Palneedi et al., High-performance dielectric ceramic films for energy storage capacitors: Progress and outlook, Adv. Funct. Mater. 28 (42), 1803665 (2018). DOI: 10.1002/adfm.201803665.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.