Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 240, 2024 - Issue 1
69
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Preparation of Eggshell Derived HA-BT Composite for Biomedical Applications

, &
Pages 163-174 | Received 04 Oct 2023, Accepted 04 Dec 2023, Published online: 08 Feb 2024

References

  • T. R. Rautray, R. Narayanan, and K.-H. Kim, Ion implantation of titanium based biomaterials, Prog. Mater. Sci. 56 (8), 1137 (2011). DOI: 10.1016/j.pmatsci.2011.03.002.
  • R. Amini, C. T. Laurencin, and S. P. Nukavarapu, Bone tissue engineering: Recent advances and challenges, Crit. Rev. Biomed. Eng. 40 (5), 363 (2012). DOI: 10.1615/CritRevBiomedEng.v40.i5.10.
  • J. Salgado, O. P. Coutinho, and R. L. Reis, Bone tissue engineering: State of the art and future trends, Macromol. Biosci. 4 (8), 743 (2004). DOI: 10.1002/mabi.20040002610.
  • T. R. Rautray, B. Mohapatra, and K.-H. Kim, Fabrication of strontium hydroxyapatite scaffolds for biomedical applications, Adv. Sci. Lett. 20 (3), 879 (2014). DOI: 10.1166/asl.2014.5424.
  • E. García-Gareta, M. J. Coathup, and G. W. Blunn, Osteoinduction of bone grafting materials for bone repair and regeneration, Bone 81, 112 (2015). DOI: 10.1016/j.bone.2015.07.007.
  • B. Mohapatra, and T. R. Rautray, Facile fabrication of Luffa cylindrica assisted 3D hydroxyapatite scaffolds, Bioinspired, Biomim. Nanobiomater. 10 (2), 37 (2021). DOI: 10.1680/jbibn.20.00011.
  • S. Swain et al., Dual action of polarised zinc hydroxyapatite-guar gum composite as a next generation bone filler material, Mater. Today: Proc. 62, 6125 (2022). DOI: 10.1016/j.matpr.2022.05.022.
  • K. W. Lee et al., Surface characteristics and biological studies of hydroxyapatite coating by a new method, J. Biomed. Mater. Res. B Appl. Biomater. 98 (2), 395 (2011). DOI: 10.1002/jbm.b.31864.
  • H. Yuan et al., Osteoinduction by calcium phosphate biomaterials, J. Mater. Sci. Mater. Med. 9 (12), 723 (1998). DOI: 10.1023/A:1008950902047.
  • S. Swain, R. N. Padhy, and T. R. Rautray, Polarized piezoelectric bioceramic composites exhibit antibacterial activity, Mater. Chem. Phys. 239, 122002 (2020). DOI: 10.1016/j.matchemphys.2019.122002.
  • M. Sartori et al., Functionalization of ceramic coatings for enhancing integration in osteoporotic bone: a systematic review, Coatings 9 (5), 312 (2019). DOI: 10.3390/coatings9050312.
  • S. Swain, and T. R. Rautray et al., Ceramic coatings for dental implant applications, in Advanced Ceramic Coatings for Biomedical Applications, edited by R. K. Gupta (Elsevier, Amsterdam, Netherlands, 2023), pp. 249–262.
  • S. Swain et al., et al., Ceramic scaffolds for biomaterials applications, in Advanced Ceramic Coatings for Biomedical Applications, edited by R. K. Gupta (Elsevier, Amsterdam, Netherlands, 2023), pp. 223–241.
  • F. Cestari et al., Nano-hydroxyapatite derived from biogenic and bioinspired calcium carbonates: Synthesis and in vitro bioactivity, Nanomaterials 11 (2), 264 (2021). DOI: 10.3390/nano11020264.
  • J. Rocha et al., Scaffolds for bone restoration from cuttlefish, Bone 37 (6), 850 (2005). DOI: 10.1016/j.bone.2005.06.018.
  • P. Kamalanathan et al., Synthesis and sintering of hydroxyapatite derived from eggshells as a calcium precursor, Ceram. Int. 40 (10), 16349 (2014). DOI: 10.1016/j.ceramint.2014.07.074.
  • E. M. Rivera et al., Synthesis of hydroxyapatite from eggshells, Mater. Lett. 41 (3), 128 (1999). DOI: 10.1016/S0167-577X(99)00118-4.
  • S. Kim, S. S. Yang, and J. Lee, A polycaprolactone/cuttlefish bone‐derived hydroxyapatite composite porous scaffold for bone tissue engineering, J. Biomed. Mater. Res. B Appl. Biomater. 102 (5), 943 (2013). DOI: 10.1002/jbm.b.33075.
  • S. Kattimani et al., Eggshell derived hydroxyapatite as bone graft substitute in the healing of maxillary cystic bone defects: a preliminary report, J. Int. Oral Health 6, 15 (2014).
  • S. Swain, and T. R. Rautray, Assessment of polarized piezoelectric SrBi4Ti4O15 nanoparticles as an alternative antibacterial agent, bioRxiv, 2021.01. 02.425094 (2021). DOI: 10.1101/2021.01.02.425094.
  • E. Fukada, and I. Yasuda, On the piezoelectric effect of bone, J. Phys. Soc. Jpn. 12 (10), 1158 (1957). DOI: 10.1143/JPSJ.12.1158.
  • G. Hastings, and F. Mahmud, Electrical effects in bone, J. Biomed. Eng. 10 (6), 515 (1988). DOI: 10.1016/0141-5425(88)90109-4.
  • S. Swain, C. Bowen, and T. Rautray, Dual response of osteoblast activity and antibacterial properties of polarized strontium substituted hydroxyapatite—Barium strontium titanate composites with controlled strontium substitution, J. Biomed. Mater. Res. A 109 (10), 2027 (2021). DOI: 10.1002/jbm.a.37195.
  • Y.-J. Park et al., Growth of calcium phosphate on poling treated ferroelectric BaTiO3 ceramics, Biomaterials 23 (18), 3859 (2002). DOI: 10.1016/S0142-9612(02)00123-0.
  • K. Hwang et al., Effect of poling conditions on growth of calcium phosphate crystal in ferroelectric BaTiO 3 ceramics, J. Materials Sci: Mater. Med. 13, 133 (2002). DOI: 10.1023/A:1013671526975.
  • S. Swain, R. N. Padhy, and T. R. Rautray, Electrically stimulated hydroxyapatite–barium titanate composites demonstrate immunocompatibility in vitro, J. Korean Ceram. Soc. 57 (5), 495 (2020). DOI: 10.1007/s43207-020-00048-7.
  • S. Swain et al., Polarised strontium hydroxyapatite–xanthan gum composite exhibits osteogenicity in vitro, Mater. Today: Proc. 62, 6143 (2022). DOI: 10.1016/j.matpr.2022.05.026.
  • O. Oladele et al., Structural performance of poultry eggshell derived hydroxyapatite based high density polyethylene bio-composites, Heliyon 5 (10), e02552 (2019). DOI: 10.1016/j.heliyon.2019.e02552.
  • S. Swain, J. R. Koduru, and T. R. Rautray, Mangiferin-enriched Mn–hydroxyapatite coupled with β-TCP scaffolds simultaneously exhibit osteogenicity and anti-bacterial efficacy, Materials 16 (6), 2206 (2023). DOI: 10.3390/ma16062206.
  • S. Swain et al., Corona poled gelatin-Magnesium hydroxyapatite composite demonstrates osteogenicity, Mater. Today: Proc. 62, 6131 (2022). DOI: 10.1016/j.matpr.2022.05.024.
  • R. Praharaj et al., Biocompatibility and adhesion response of magnesium-hydroxyapatite/strontium-titania (Mg-HAp/Sr-TiO2) bilayer coating on titanium, Mater. Tech. 37 (4), 230 (2022). DOI: 10.1080/10667857.2020.1825898.
  • S. Swain et al., TiO2 nanotubes synthesised on Ti-6Al-4V ELI exhibits enhanced osteogenic activity: A potential next-generation material to be used as medical implants, Mater. Tech. 36 (7), 393 (2020). DOI: 10.1080/10667857.2020.1760510.
  • S. Swain et al., Ti‐9Mn β‐type alloy exhibits better osteogenicity than Ti‐15Mn alloy in vitro, J. Biomed. Mater. Res. B Appl. Biomater. 109 (12), 2154 (2021). DOI: 10.1002/jbm.b.34863.
  • R. S. Spitzer et al., Matrix engineering for osteogenic differentiation of rabbit periosteal cells using α‐tricalcium phosphate particles in a three‐dimensional fibrin culture, J. Biomed. Mater. Res. 59 (4), 690 (2001). DOI: 10.1002/jbm.1277.
  • P. Habibovic, and K. de Groot, Osteoinductive biomaterials—properties and relevance in bone repair, J. Tissue Eng. Regen. Med. 1 (1), 25 (2007). DOI: 10.1002/term.5.
  • T. R. Rautray et al., Surface modification of titanium and titanium alloys by ion implantation, J. Biomed. Mater. Res. B Appl. Biomater. 93 (2), 581 (2010). DOI: 10.1002/jbm.b.31596.
  • L. Eto et al., Use of anorganic bovine‐derived hydroxyapatite matrix/cell‐binding peptide (P‐15) in the treatment of class II furcation defects: A clinical and radiographic study in humans, J. Periodontol. 78 (12), 2277 (2007). DOI: 10.1902/jop.2007.070234.
  • N. M. Pu’ad et al., Synthesis of eggshell derived hydroxyapatite via chemical precipitation and calcination method, Mater, Today: Proc. 42, 172 (2021). DOI: 10.1016/j.matpr.2020.11.276.
  • D. Siva Rama Krishna et al., A novel route for synthesis of nanocrystalline hydroxyapatite from eggshell waste, J. Mater. Sci. Mater. Med. 18 (9), 1735 (2007). DOI: 10.1007/s10856-007-3069-7.
  • H. Khandelwal, and S. Prakash, Synthesis and characterization of hydroxyapatite powder by eggshell, JMMCE. 04 (02), 119 (2016). DOI: 10.4236/jmmce.2016.42011.
  • R. Praharaj, S. Mishra, and T. R. Rautray, The structural and bioactive behaviour of strontium-doped titanium dioxide nanorods, J. Korean Ceram. Soc. 57 (3), 271 (2020). DOI: 10.1007/s43207-020-00027-y.
  • T. R. Rautray, V. Vijayan, and S. Panigrahi, Synthesis of hydroxyapatite at low temperature, Indian J. Phys. 81, 95 (2007).
  • S. Swain, and T. R. Rautray, Effect of surface roughness on titanium medical implants, in Nanostructured Materials and Their Applications, edited by B. P. Swain (Springer, Singapore, 2020), pp. 55–80.
  • X. Chen et al., Biomimetic mineralisation of eggshell membrane featuring natural nanofiber network structure for improving its osteogenic activity, Colloids, Colloids Surf. B Biointerf. 179, 299 (2019). DOI: 10.1016/j.colsurfb.2019.04.009.
  • S. Mondal et al., Comparative characterization of biogenic and chemical synthesized hydroxyapatite biomaterials for potential biomedical application, Mater. Chem. Phys. 228, 344 (2019). DOI: 10.1016/j.matchemphys.2019.02.021.
  • L. Bacakova et al., Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants, Biotechnol. Adv. 29 (6), 739 (2011). DOI: 10.1016/j.biotechadv.2011.06.004.
  • S. Mishra, and T. R. Rautray et al., Bioceramics for adhesive applications, in Advanced Ceramic Coatings for Biomedical Applications, edited by R. K. Gupta (Elsevier, Amsterdam, Netherlands, 2023), pp. 323–338.
  • S. Swain et al., et al., Polarized Chitosan with Cu substituted hydroxyapatite composite exhibits enhanced osteogenicity and antibacterial efficacy in vitro, in Asian Conference on Indoor Environmental Quality, edited by K. Dutta (Springer, Singapore, 2021), pp. 139–152.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.