1,442
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Lower Bounds on the Number of Realizations of Rigid Graphs

ORCID Icon, ORCID Icon &

References

  • [Borcea and Streinu 04] C. Borcea and I. Streinu. “The Number of Embeddings of Minimally Rigid Graphs.” Discrete. Comput. Geom. 31 (2004), 287–303.
  • [Capco et al. 16] J. Capco, M. Gallet, G. Grasegger, C. Koutschan, N. Lubbes, and J. Schicho. Electronic Supplementary Material for the Paper “The Number of Realizations of a Laman Graph.” Available online (http://www.koutschan.de/data/laman/), 2016.
  • [Capco et al. 17a] J. Capco, M. Gallet, G. Grasegger, C. Koutschan, N. Lubbes, and J. Schicho. “Computing the Number of Realizations of a Laman Graph.” Electr. Notes Discr. Math. 61 (2017), 207–213. The European Conference on Combinatorics, Graph Theory and Applications (EUROCOMB’17).
  • [Capco et al. 17b] J. Capco, M. Gallet, G. Grasegger, C. Koutschan, N. Lubbes, and J. Schicho. “The Number of Realizations of a Laman Graph.” SIAM J. Appl. Alg. Geom. (2017). arXiv:1701.05500.
  • [Cruickshank 14] J. Cruickshank. “On Spaces of Infinitesimal Motions and Three Dimensional Henneberg Extensions.” Discrete Comput. Geom. 51: 3 (2014), 702–721.
  • [Emiris and Moroz 11] I. Z. Emiris and G. Moroz. The Assembly Modes of Rigid 11-bar Linkages. IFToMM 2011 World Congress, Guanajuato, Mexico, June 19–25, 2011. arXiv:1010.6214.
  • [Emiris and Mourrain 99] I. Z. Emiris and B. Mourrain. “Computer Algebra Methods for Studying and Computing Molecular Conformations.” Algorithmica, Spec. Issue Algo. Comput. Biol. 25 (1999), 372–402.
  • [Emiris et al. 13] I. Z. Emiris, E. P. Tsigaridas, and A. Varvitsiotis. “Mixed Volume and Distance Geometry Techniques for Counting Euclidean Embeddings of Rigid Graphs.” In Distance Geometry, edited by A. Mucherino, C. Lavor, L. Liberti and N. Maculan, pp. 23–45. New York: Springer, 2013.
  • [Emiris et al. 09] I. Z. Emiris, E. P. Tsigaridas, and A. E. Varvitsiotis. “Algebraic Methods for Counting Euclidean Embeddings of Graphs.” In Graph Drawing: 17th International Symposium, edited by D. Eppstein and E. R. Gamsners, pp. 195–200. New York: Springer, 2009.
  • [Emmerich 88] D. G. Emmerich. Structures tendues et autotendantes. Ecole d’Architecture de Paris La Villette, 1988.
  • [Faugère 10] J. C. Faugère. “FGb: A Library for Computing Gröbner Bases.” In Mathematical Software - ICMS 2010, volume 6327 of Lecture Notes in Computer Science, edited by K. Fukuda, J. van der Hoeven, M. Joswig and N. Takayama, pp. 84–87. Berlin Heidelberg: Springer, 2010.
  • [Faugère and Lazard 95] J. C. Faugère and D. Lazard. “The Combinatorial Classes of Parallel Manipulators Combinatorial Classes of Parallel Manipulators.” Mech. Mach. Theo. 30: 6 (1995), 765–776.
  • [Graver et al. 93] J. Graver, B. Servatius, and H. Servatius. Combinatorial Rigidity. Providence, RI: American Mathematical Society, 1993.
  • [Henneberg 03] L. Henneberg. “Die graphische Statik der starren Körper.” In Encyklopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, edited by F. Klein and C. Müler, vol. IV, pp. 345–434. Leipzig: B. G. Teubner, 1903.
  • [Jackson and Owen 18] B. Jackson and J. C. Owen. “Equivalent Realisations of A Rigid Graph.” Disc. Appl. Math., 2018. DOI:10.1016/j.dam.2017.12.009.
  • [Jacobs et al. 01] D. J. Jacobs, A. J. Rader, L. A. Kuhn, and M. F. Thorpe. “Protein Flexibility Predictions using Graph Theory.” Prot. Struct. Funct. Genet. 44: 2 (2001), 150–165.
  • [Laman 70] G. Laman. “On Graphs and Rigidity of Plane Skeletal Structures.” J. Eng. Math. 4 (1970), 331–340.
  • [Liberti et al. 11] L. Liberti, C. Lavor, A. Mucherino, and N. Maculan. “Molecular Distance Geometry Methods: From Continuous to Discrete.” Int. Trans. Operat. Res. 18: 1 (2011), 33–51.
  • [Liberti et al. 14] L. Liberti, B. Masson, J. Lee, C. Lavor, and A. Mucherino. “On the Number of Realizations of Certain Henneberg Graphs Arising in Protein Conformation.” Disc. Appl. Math. 165 (2014), 213–232.
  • [Mucherino et al. 12] A. Mucherino, C. Lavor, L. Liberti, and N. Maculan. Distance Geometry: Theory, Methods, and Applications. New York: Springer Science & Business Media, 2012.
  • [Pollaczek-Geiringer 27] H. Pollaczek-Geiringer. “Über die Gliederung ebener Fachwerke.” Z. Angew. Math. Mech. (ZAMM) 7: 1 (1927), 58–72.
  • [Pollaczek-Geiringer 32] H. Pollaczek-Geiringer. “Zur Gliederungstheorie räumlicher Fachwerke.” Z. Angew. Math. Mech. (ZAMM) 12: 6 (1932), 369–376.
  • [Steffens and Theobald 10] R. Steffens and T. Theobald. “Mixed Volume Techniques for Embeddings of Laman Graphs.” Comput. Geom. 43: 2 (2010), 84–93.
  • [Tay and Whiteley 85] T.-S. Tay and W. Whiteley. “Generating Isostatic Frameworks.” Topol. Struct. 11 (1985), 21–69.
  • [Walter and Husty 07a] D. Walter and M. L. Husty. “On a 9-bar Linkage, its Possible Configurations and Conditions for Paradoxical Mobility.” IFToMM World Congress 2007, Besançon, France, June 17–21, 2007.
  • [Walter and Husty 07b] D. Walter and M. L. Husty. “A Spatial 9-bar Linkage, Possible Configurations and Conditions for Paradoxical Mobility.” NaCoMM, Bangalore, India, pp. 195–208, December 12–13, 2007.
  • [Zhu 10] Z. Zhu, A. M.-C. So, and Y. Ye. “Universal Rigidity and Edge Sparsification for Sensor Network Localization.” SIAM J. Optim. 20: 6 (2010), 3059–3081.