122
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Minuscule Doppelgängers, The Coincidental down-Degree Expectations Property, and Rowmotion

References

  • Reiner, V., Tenner, B. E., Yong, A. (2018). Poset edge densities, nearly reduced words, and barely set-valued tableaux. J. Combin. Theory Ser. A. 158: 66–125. DOI: 10.1016/j.jcta.2018.03.010
  • Fan, N. J. Y., Guo, P. L, Sun, S. C. C. (2019). Proof of a conjecture of Reiner–Tenner–Yong on barely set-valued tableaux. SIAM J. Discrete Math. 33(1): 189–196. DOI: 10.1137/18M1214305
  • Hopkins, S. (2017). The CDE property for minuscule lattices. J. Combin. Theory Ser. A. 152: 45–103. DOI: 10.1016/j.jcta.2017.06.006
  • Hopkins, S. (2019). The CDE property for skew vexillary permutations. J. Combin. Theory Ser. A. 168: 164–218. DOI: 10.1016/j.jcta.2019.06.005
  • Rush, D. B. (2016). On order ideals of minuscule posets III: The CDE property. Preprint, arXiv:1607.08018.
  • Hamaker, Z., Patrias, R., Pechenik, O, Williams, N. (2020). Doppelgängers: Bijections of plane partitions. Int. Math. Res. Notices. 2020(2): 487–540. DOI: 10.1093/imrn/rny018
  • Chan, M., López Martín, A., Pflueger, N, Teixidor I Bigas, M. (2018). Genera of Brill-Noether curves and staircase paths in Young tableaux. Trans. Amer. Math. Soc. 370(5): 3405–3439. DOI: 10.1090/tran/7044
  • Chan, M., Haddadan, S., Hopkins, S, Moci, L. (2017). The expected jaggedness of order ideals. Forum Math. Sigma. 5: 27.
  • Stanley, R. P. (1986). Two poset polytopes. Discrete Comput. Geom. 1(1): 9–23. DOI: 10.1007/BF02187680
  • Armstrong, D., Stump, C, Thomas, H. (2013). A uniform bijection between nonnesting and noncrossing partitions. Trans. Amer. Math. Soc. 365(8): 4121–4151. DOI: 10.1090/S0002-9947-2013-05729-7
  • Brouwer, A. E, Schrijver, A. (1974). On the period of an operator, defined on antichains. Mathematisch Centrum, Amsterdam, Mathematisch Centrum Afdeling Zuivere Wiskunde ZW 24/74.
  • Cameron, P. J, Fon-Der-Flaass, D. G. (1995). Orbits of antichains revisited. Eur. J. Combin. 16(6): 545–554. DOI: 10.1016/0195-6698(95)90036-5
  • Fon-Der-Flaass, D. G. (1993). Orbits of antichains in ranked posets. Eur. J. Combin. 14(1): 17–22. DOI: 10.1006/eujc.1993.1003
  • Panyushev, D. I. (2009). On orbits of antichains of positive roots. Eur. J. Combin. 30(2): 586–594. DOI: 10.1016/j.ejc.2008.03.009
  • Striker, J., Williams, N. (2012). Promotion and rowmotion. Eur. J. Combin. 33(8): 1919–1942. DOI: 10.1016/j.ejc.2012.05.003
  • Propp, J, Roby, T. (2015). Homomesy in products of two chains. Electron. J. Combin. 22: 29. (3)Paper 3.4, DOI: 10.37236/3579
  • Rush, D. B., Shi, X. (2013). On orbits of order ideals of minuscule posets. J. Algebr. Comb. 37(3): 545–569. DOI: 10.1007/s10801-012-0380-2
  • Rush, D. B., Wang, K. (2015). On orbits of order ideals of minuscule posets II: Homomesy. Preprint, arXiv:1509.08047.
  • Einstein, D, Propp, J. (2013). Combinatorial, piecewise-linear, and birational homomesy for products of two chains. Preprint, arXiv:1310.5294.
  • Einstein, D, Propp, J. (2014). Piecewise-linear and birational toggling. In 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), Discrete Math. Theor. Comput. Sci. Proc., AT, pp. 513–524. Assoc. Discrete Math. Theor. Comput. Sci., Nancy.
  • Grinberg, D, Roby, T. (2015). Iterative properties of birational rowmotion II: rectangles and triangles. Electron. J. Combin. 22(3): 49. DOI: 10.37236/4335
  • Grinberg, D, Roby, T. (2016). Iterative properties of birational rowmotion I: generalities and skeletal posets. Electron. J. Combin. 23: 40. (1)Paper 1.33, DOI: 10.37236/4334
  • Rhoades, B. (2010). Cyclic sieving, promotion, and representation theory. J. Combin. Theory Ser. A. 117(1): 38–76. DOI: 10.1016/j.jcta.2009.03.017
  • Ceballos, C., Labbé, J.-P, Stump, C. (2014). Subword complexes, cluster complexes, and generalized multi-associahedra. J. Algebr. Comb. 39(1): 17–51. DOI: 10.1007/s10801-013-0437-x
  • The Sage-Combinat community. (2019). Sage-Combinat: enhancing Sage as a toolbox for computer exploration in algebraic combinatorics, http://combinat.sagemath.org.
  • The Sage Developers. (2019). SageMath, the Sage Mathematics Software System (Version 8.4), http://www.sagemath.org.
  • Stanley, R. P. (2012). Enumerative Combinatorics. Volume 1, Volume 49 of Cambridge Studies in Advanced Mathematics, 2nd ed. Cambridge: Cambridge University Press.
  • Stanley, R. P. (1972). Ordered structures and partitions. American Mathematical Society, Providence, R.I., Memoirs of the American Mathematical Society, No. 119. DOI: 10.1090/memo/0119
  • Leon Johnson, K. (1971). Real Representations of Finite Directed Graphs ProQuest LLC. PhD dissertation. Ann Arbor, MI: The University of Alabama.
  • Browning, T., Hopkins, M, Kelley, Z. (2017). Doppelgangers: the Ur-operation and posets of bounded height. Preprint, arXiv:1710.10407.
  • Liu, R. I., Weselcouch, M. (2020). P-partition generating function equivalence of naturally labeled posets. J. Combin. Theory Ser. A. 170: 105136–105131. DOI: 10.1016/j.jcta.2019.105136
  • McNamara, P. R. W., Ward, R. E. (2014). Equality of P-partition generating functions. Ann. Comb. 18(3): 489–514. DOI: 10.1007/s00026-014-0236-7
  • Billera, L. J., Thomas, H, van Willigenburg, S. (2006). Decomposable compositions, symmetric quasisymmetric functions and equality of ribbon Schur functions. Adv. Math. 204(1): 204–240. DOI: 10.1016/j.aim.2005.05.014
  • McNamara, P. R. W. (2014). Comparing skew Schur functions: a quasisymmetric perspective. J. Comb. 5(1): 51–85. DOI: 10.4310/JOC.2014.v5.n1.a3
  • McNamara, P. R. W., van Willigenburg, S. (2009). Towards a combinatorial classification of skew Schur functions. Trans. Amer. Math. Soc. 361(8): 4437–4470. DOI: 10.1090/S0002-9947-09-04683-2
  • Reiner, V., Shaw, K. M., van Willigenburg, S. (2007). Coincidences among skew Schur functions. Adv. Math. 216(1): 118–152. DOI: 10.1016/j.aim.2007.05.006
  • Striker, J. (2011). A unifying poset perspective on alternating sign matrices, plane partitions, Catalan objects, tournaments, and tableaux. Adv. Appl. Math. 46(1-4): 583–609. DOI: 10.1016/j.aam.2010.02.007
  • Dreesen, B., Poguntke, W, Winkler, P. (1985). Comparability invariance of the fixed point property. Order. 2(3): 269–274.
  • Kelly, D. (1986). Invariants of finite comparability graphs. Order. 3(2): 155–158. DOI: 10.1007/BF00390105
  • Björner, A, Brenti, F. (2005). Combinatorics of Coxeter Groups, Volume 231 of Graduate Texts in Mathematics. New York: Springer.
  • Bourbaki, N. (2002). Lie Groups and Lie Algebras. Chapters 4–6. Elements of Mathematics (Berlin). Berlin: Springer-Verlag. Translated from the 1968 French original by Andrew Pressley.
  • Humphreys, J. E. (1972). Introduction to Lie Algebras and Representation Theory. New York-Berlin: Springer-Verlag, Graduate Texts in Mathematics, Vol. 9.
  • Miller, A. R. (2015). Foulkes characters for complex reflection groups. Proc. Amer. Math. Soc. 143(8): 3281–3293. DOI: 10.1090/S0002-9939-2015-12385-4
  • Miller, A. R. (2018). Walls in Milnor fiber complexes. Doc. Math. 23: 1247–1261.
  • Kostant, B. (1959). The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group. Amer. J. Math. 81: 973–1032. DOI: 10.2307/2372999
  • Humphreys, J. E. (1990). Reflection Groups and Coxeter Groups, Volume 29 of Cambridge Studies in Advanced Mathematics. Cambridge: Cambridge University Press.
  • Armstrong, D. (2009). Generalized noncrossing partitions and combinatorics of Coxeter groups. Memoirs of the Ams. 202(949): 159. DOI: 10.1090/S0065-9266-09-00565-1
  • Cuntz, M, Stump, C. (2015). On root posets for noncrystallographic root systems. Math. Comp. 84(291): 485–503. DOI: 10.1090/S0025-5718-2014-02841-X
  • Green, R. M. (2013). Combinatorics of Minuscule Representations, Volume 199 of Cambridge Tracts in Mathematics. Cambridge; Cambridge University Press.
  • Proctor, R. A. (1984). Bruhat lattices, plane partition generating functions, and minuscule representations. Eur. J. Combin. 5(4): 331–350. DOI: 10.1016/S0195-6698(84)80037-2
  • Seshadri, C. S. (1978). Geometry of G/P. I. Theory of standard monomials for minuscule representations In C. P. Ramanujam—A Tribute, Volume 8 of Tata Inst. Fund. Res. Studies in Math., Berlin-New York: Springer, pp. 207–239.
  • Garver, A., Patrias, R, Thomas, H. (2018). Minuscule reverse plane partitions via quiver representations. Preprint, arXiv:1812.08345.
  • Proctor, R. A. (1983). Shifted plane partitions of trapezoidal shape. Proc. Amer. Math. Soc. 89(3): 553–559. DOI: 10.1090/S0002-9939-1983-0715886-0
  • Williams, N. (2013). Cataland. ProQuest LLC. PhD dissertation. Ann Arbor, MI, University of Minnesota.
  • Thomas, H., Yong, A. (2009). A combinatorial rule for (co)minuscule Schubert calculus. Adv. Math. 222(2): 596–620. DOI: 10.1016/j.aim.2009.05.008
  • Thomas, H., Yong, A. (2009). A jeu de taquin theory for increasing tableaux, with applications to K-theoretic Schubert calculus. Ant. 3(2): 121–148. DOI: 10.2140/ant.2009.3.121
  • Proctor, R. A. (1990). New symmetric plane partition identities from invariant theory work of De Concini and Procesi. Eur. J. Combin. 11(3): 289–300. DOI: 10.1016/S0195-6698(13)80128-X
  • Purbhoo, K. (2018). A marvellous embedding of the Lagrangian Grassmannian. J. Combin. Theory Ser. A. 155: 1–26. DOI: 10.1016/j.jcta.2017.08.012
  • Sheats, J. T. (1999). A symplectic jeu de taquin bijection between the tableaux of King and of De Concini. Trans. Amer. Math. Soc. 351(9): 3569–3607.
  • Stembridge, J. R. (1996). On the fully commutative elements of Coxeter groups. J. Algebr. Comb. 5(4): 353–385. DOI: 10.1007/BF00193185
  • Panyushev, D. I. (2006). The poset of positive roots and its relatives. J. Algebr. Comb. 23(1): 79–101. DOI: 10.1007/s10801-006-6030-9
  • Panyushev, D. I. (2004). ad-nilpotent ideals of a Borel subalgebra: generators and duality. J. Algebra. 274(2): 822–846. DOI: 10.1016/j.jalgebra.2003.09.007
  • MacMahon, P. A. (2004). Combinatory Analysis. Vol. I, II (Bound in One Volume). Dover Phoenix Editions. Dover Publications, Inc., Mineola, NY, Reprint of An introduction to combinatory analysis (1920) and Combinatory analysis. Vol. I, II (1915, 1916).
  • Stembridge, J. R. (1994). On minuscule representations, plane partitions and involutions in complex Lie groups. Duke Math. J. 73(2): 469–490. DOI: 10.1215/S0012-7094-94-07320-1
  • Ding, J, Dong, C.-P. (2019). Antichain generating polynomials of posets. Preprint, arXiv:1905.06692.
  • Stembridge, J. R. (1986). Trapezoidal chains and antichains. Eur. J. Combin. 7(4): 377–387. DOI: 10.1016/S0195-6698(86)80009-9
  • Elizalde, S. (2015). Bijections for pairs of non-crossing lattice paths and walks in the plane. European J. Combin. 49: 25–41. DOI: 10.1016/j.ejc.2015.02.028
  • Reiner, V. (1997). Non-crossing partitions for classical reflection groups. Discrete Math. 177(1-3): 195–222. DOI: 10.1016/S0012-365X(96)00365-2
  • Lam, T., Pylyavskyy, P. (2007). Combinatorial Hopf algebras and K-homology of Grassmannians. Int. Math. Res. Not. IMRN. (24): 48 pp.
  • Buch, A. S. (2002). A Littlewood-Richardson rule for the K-theory of Grassmannians. Acta Math. 189(1): 37–78. DOI: 10.1007/BF02392644
  • Monical, C., Pechenik, O., Scrimshaw, T. (2018). Crystal structures for symmetric Grothendieck polynomials. Preprint, arXiv:1807.03294.
  • Stanley, R. P. (2009). Promotion and evacuation. Electron. J. Combin. 16(2): 24. Special volume in honor of Anders Björner):Research Paper 9, 24 pp. DOI: 10.37236/75
  • Reiner, V., Stanton, D., White, D. (2004). The cyclic sieving phenomenon. J. Combin. Theory Ser. A. 108(1): 17–50. DOI: 10.1016/j.jcta.2004.04.009
  • Bessis, D, Reiner, V. (2011). Cyclic sieving of noncrossing partitions for complex reflection groups. Ann. Comb. 15(2): 197–222. DOI: 10.1007/s00026-011-0090-9
  • Roby, T. (2016). Dynamical algebraic combinatorics and the homomesy phenomenon In Recent Trends in Combinatorics, Volume 159 of IMA Vol. Math. Appl., Cham, Switzerland: Springer, pp. 619–652.
  • Striker, J. (2017). Dynamical algebraic combinatorics: promotion, rowmotion, and resonance. Notices Amer. Math. Soc. 64(6): 543–549. DOI: 10.1090/noti1539
  • Striker, J. (2015). The toggle group, homomesy, and the Razumov-Stroganov correspondence. Electron. J. Combin. 22(2): 57. DOI: 10.37236/5158
  • Dao, Q., Wellman, J., Yost-Wolff, C, Zhang, S. (2020). Rowmotion orbits of trapezoid posets. Preprint, arXiv:2002.04810.
  • Haiman, M. D. (1989). On mixed insertion, symmetry, and shifted Young tableaux. J. Combin. Theory Ser. A. 50(2): 196–225. DOI: 10.1016/0097-3165(89)90015-0
  • Haiman, M. D. (1992). Dual equivalence with applications, including a conjecture of Proctor. Discrete Math. 99(1-3): 79–113. DOI: 10.1016/0012-365X(92)90368-P
  • Joseph, M. (2019). Antichain toggling and rowmotion. Electron. J. Combin. 26(1): 43. DOI: 10.37236/7454
  • Mandel, H., Pechenik, O. (2018). Orbits of plane partitions of exceptional Lie type. European J. Combin. 74: 90–109. DOI: 10.1016/j.ejc.2018.07.007
  • Okada, S. (2020). Birational rowmotion and Coxeter-motion on minuscule posets. In preparation.
  • Hopkins, S. (2019). Cyclic sieving for plane partitions and symmetry. Preprint, arXiv:1907.09337.
  • Du, J. (1992). Canonical bases for irreducible representations of quantum GLn. Bull. London Math. Soc. 24(4): 325–334. DOI: 10.1112/blms/24.4.325
  • Lusztig, G. (1990). Canonical bases arising from quantized enveloping algebras. J. Amer. Math. Soc. 3(2): 447–498. DOI: 10.1090/S0894-0347-1990-1035415-6
  • Shen, L, Weng, D. (2018). Cyclic sieving and cluster duality for Grassmannian. Preprint, arXiv:1803.06901.
  • Fock, V. V, Goncharov, A. B. (2009). Cluster ensembles, quantization and the dilogarithm. Ann. Sci. École Norm. Sup. 42(6): 865–930. DOI: 10.24033/asens.2112
  • Gross, M., Hacking, P., Keel, S, Kontsevich, M. (2017). Canonical bases for cluster algebras. J. Amer. Math. Soc. 31(2): 497–608. DOI: 10.1090/jams/890
  • Fontaine, B, Kamnitzer, J. (2014). Cyclic sieving, rotation, and geometric representation theory. Sel. Math. New. Ser. 20(2): 609–625. DOI: 10.1007/s00029-013-0144-4
  • Joseph, A., Letzter, G, Zelikson, S. (2000). On the Brylinski-Kostant filtration. J. Amer. Math. Soc. 13(4): 945–970. DOI: 10.1090/S0894-0347-00-00347-7
  • Lusztig, G. (1983). Singularities, character formulas, and a q-analog of weight multiplicities. In Analysis and Topology on Singular Spaces, II, III (Luminy, 1981), Volume 101 of Astérisque, pages 208–229. Soc. Math. France, Paris.
  • Pfannerer, S., Rubey, M., Westbury, B. W. (2020). Promotion on oscillating and alternating tableaux and rotation of matchings and permutations. Algebr. Comb. 3(1): 107–141. DOI: 10.5802/alco.87
  • Rubey, M., Westbury, B. W. (2015). Combinatorics of symplectic invariant tensors In Proceedings of FPSAC 2015, Discrete Math. Theor. Comput. Sci. Proc., pp. 285–296. Assoc. Discrete Math. Theor. Comput. Sci., Nancy.
  • Westbury, B. W. (2016). Invariant tensors and the cyclic sieving phenomenon. Electron. J. Combin. 23(4): 25–40. DOI: 10.37236/4569
  • Henriques, A, Kamnitzer, J. (2006). Crystals and coboundary categories. Duke Math. J. 132(2): 191–216. DOI: 10.1215/S0012-7094-06-13221-0
  • Fomin, S, Reading, N. (2005). Generalized cluster complexes and Coxeter combinatorics. Internat. Math. Res. Notices (44): 2709–2757. DOI: 10.1155/IMRN.2005.2709
  • Eu, S.-P, Fu, T.-S. (2008). The cyclic sieving phenomenon for faces of generalized cluster complexes. Adv. in Appl. Math. 40(3): 350–376. DOI: 10.1016/j.aam.2007.01.005
  • Hamaker, Z, Williams, N. (2015). Subwords and plane partitions. In Proceedings of FPSAC 2015, Discrete Math. Theor. Comput. Sci. Proc., pp. 241–252. Assoc. Discrete Math. Theor. Comput. Sci., Nancy.
  • Joseph, M, Roby, T. (2019). Birational and noncommutative lifts of antichain toggling and rowmotion. Preprint, arXiv:1909.09658.
  • Einstein, D., Farber, M., Gunawan, E., Joseph, M., Macauley, M., Propp, J, Rubinstein-Salzedo, S. (2016). Noncrossing partitions, toggles, and homomesies. Electron. J. Combin. 23(3): 26. DOI: 10.37236/5648
  • Joseph, M, Roby, T. (2018). Toggling independent sets of a path graph. Electron. J. Combin. 25(1): 31. DOI: 10.37236/6755
  • Striker, J. (2018). Rowmotion and generalized toggle groups. Discrete Math. Theor. Comput. Sci. 20(1): 26 pp.
  • Thomas, H., Williams, N. (2019). Independence posets. J. Comb. 10(3): 545–578. DOI: 10.4310/JOC.2019.v10.n3.a5
  • Kirillov, A. N, Berenstein, A. D. (1995). Groups generated by involutions, Gel’fand-Tsetlin patterns, and combinatorics of Young tableaux. Algebra i Analiz. 7(1): 92–152.
  • Kirillov, A. N. (2001). Introduction to tropical combinatoric In Physics and Combinatorics, 2000 (Nagoya). River Edge, NJ: World Sci. Publ., pp. 82–150. DOI: 10.1142/9789812810007_0005
  • Musiker, G., Roby, T. (2019). Paths to understanding birational rowmotion on products of two chains. Algebr. Comb. 2: 275–304. (2) DOI: 10.5802/alco.43
  • Volkov, A. Y. (2007). On the periodicity conjecture for Y-systems. Commun. Math. Phys. 276(2): 509–517. DOI: 10.1007/s00220-007-0343-y
  • Galashin, P, Pylyavskyy, P. (2019). R-systems. Selecta Math. (N.S.). 25(2): 63.
  • Grinberg, D. (2018). Personal communication.
  • Joseph, M, Roby, T. (2020). A birational lifting of the Stanley–Thomas word on products of two chains. Preprint, arXiv:2001.03811.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.