179
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Decomposing Jacobians Via Galois covers

, , &

References

  • Baker, H. F. (1995). Abelian Functions. Cambridge: Cambridge Mathematical Library, Cambridge University Press. Abel’s theorem and the allied theory of theta functions, Reprint of the 1897 original, With a foreword by Igor Krichever.
  • Bars, F. (2006). Automorphism groups of genus 3 curves. Notes del seminari Corbes de Gèneres 3.
  • Bosma, W., Cannon, J., Playoust, C. (1997). The Magma algebra system. I. The user language. J. Symbolic Comput. 24(3/4): 235–265. Computational algebra and number theory (London, 1993).
  • Bruin, N., Doerksen, K. (2011). The arithmetic of genus two curves with (4, 4)-split Jacobians. Canad. J. Math. 63(5): 992–1024.
  • Bertin, J. (2013). Algebraic stacks with a view toward moduli stacks of covers. In Pierre Dèbes, Michel Emsalem, Matthieu Romagny and A. Muhammed Uludağ (Editors), Arithmetic and Geometry Around Galois Theory, Vol. 304 of Progr. Math. Basel: Birkhäuser/Springer, pp. 1–148.
  • Bröker, R., Howe, E. W., Lauter, K. E., Stevenhagen. P. (2015). Genus-2 curves and Jacobians with a given number of points. LMS J. Comput. Math. 18(1): 170–197.
  • Borówka, P., Ortega, A. (2020). Klein coverings of genus 2 curves. Trans. Amer. Math. Soc. 373(3): 1885–1907.
  • Bolza, O. (1887). Über die Reduction hyperelliptischer Integrale erster Ordnung und erster Gattung auf elliptische durch eine Transformation vierten Grades. Math. Ann. 28: 447–456. doi:10.1007/BF02440001
  • Bouw, I. I. (1998). Tame covers of curves: p-ranks and fundamental groups. PhD thesis, Utrecht University.
  • Bertin, J., Romagny, M. (2011). Champs de Hurwitz. Mém. Soc. Math. Fr. (N.S.) (125–126): 219. doi:10.24033/msmf.437
  • Breuer, T. (2000). Characters and Automorphism Groups of Compact Riemann Surfaces, Vol. 280 of London Mathematical Society Lecture Note Series. Cambridge: Cambridge University Press.
  • Bruin, N. (2008). The arithmetic of Prym varieties in genus 3. Compos. Math. 144(2): 317–338.
  • Carocca, A., Hidalgo, R., Rodriguez, R. E. (2020). q-étale covers of cyclic p-gonal covers. Preprint available at arXiv:2002.12082.
  • Carocca, A., Recillas, S., Rodríguez, R. (2002). Dihedral groups acting on Jacobians. In Clifford J. Earle, William J. Harvey and Sevín Recillas-Pishmish (Editors), Complex Manifolds and Hyperbolic Geometry (Guanajuato, 2001), Vol. 311 of Contemp. Math. Providence, RI: Amer. Math. Soc., pp. 41–77.
  • Chevalley, C., Weil, A., Hecke, E. (1934). Über das Verhalten der Integrale 1. Gattung bei Automorphismen des Funktionenkörpers. Abh. Math. Sem. Univ. Hamburg 10(1): 358–361. doi:10.1007/BF02940687
  • Dalaljan, S. G. (1975) The Prym variety of a two-sheeted covering of a hyperelliptic curve with two branch points. Mat. Sb. (N.S.) 98(140): (2 (10)).
  • Dolgachev, I. V. (2012). Classical Algebraic Geometry. Cambridge: Cambridge University Press. A modern view.
  • Donagi, R. (1981). The tetragonal construction. Bull. Amer. Math. Soc. (N.S.) 4(2): 181–185.
  • Donagi, R. (1992). The fibers of the Prym map. In Ron Donagi (Editor), Curves, Jacobians, and Abelian Varieties (Amherst, MA, 1990), Vol. 136 of Contemp. Math. Providence, RI: Amer. Math. Soc., pp. 55–125.
  • Enolskii, V., Richter, P. (2008). Periods of hyperelliptic integrals expressed in terms of θ-constants by means of Thomae formulae. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 366(1867): 1005–1024.
  • Goursat, E. (1885). Sur la réduction des intégrales hyperelliptiques. Bull. Soc. Math. France 13: 143–162. doi:10.24033/bsmf.300
  • Gaudry, P., Schost, E. (2001). On the invariants of the quotients of the Jacobian of a curve of genus 2. In Serdar Boztaş and Igor E. Shparlinski (Editors), Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (Melbourne, 2001), Vol. 2227 of Lecture Notes in Comput. Sci. Berlin: Springer, pp. 373–386.
  • Henn, P.-G. (1976). Die Automorphismengruppen der algebraischen Funktionenkörper vom Geschlecht 3. PhD thesis, Heidelberg.
  • E. W. Howe, F. Leprévost, and B. Poonen. (2000). Large torsion subgroups of split Jacobians of curves of genus two or three. Forum Math. 12(3): 315–364.
  • Izquierdo, M., Jiménez, L., Rojas, A. (2019). Decomposition of Jacobian varieties of curves with dihedral actions via equisymmetric stratification. Rev. Mat. Iberoam. 35(4): 1259–1279. doi:10.4171/rmi/1084
  • Kani, E., Rosen, M. (1989). Idempotent relations and factors of Jacobians. Math. Ann. 284(2): 307–327.
  • Kuhn, R. M. (1988). Curves of genus 2 with split Jacobian. Trans. Amer. Math. Soc. 307(1): 41–49.
  • Kumar, A. (2015). Hilbert modular surfaces for square discriminants and elliptic subfields of genus 2 function fields. Res. Math. Sci. 2: Art. 24, 46.
  • Lenstra, Jr., H. (2008). Galois theory for schemes. Available at: http://websites.math.leidenuniv.nl/algebra/.
  • Levin, A. (2012). Siegel’s theorem and the Shafarevich conjecture. J. Théor. Nombres Bordeaux 24(3): 705–727. doi:10.5802/jtnb.818
  • Lombardo, D., Lorenzo García, E., Ritzenthaler, C., Sijsling, J. (2020). prym_decomposition, a Magma package for realizing Prym varieties as Jacobians. Available at: https://github.com/JRSijsling/prym_decomposition.
  • Lange, H., Ortega, A. (2011). Prym varieties of triple coverings. Int. Math. Res. Not. IMRN (22): 5045–5075.
  • Lange, H., Ortega, A. (2018). Prym varieties of étale covers of hyperelliptic curves. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 18(2): 467–482.
  • Lange, H., Recillas, S. (2004). Abelian varieties with group action. J. Reine Angew. Math. 575: 135–155.
  • Lercier, R., Ritzenthaler, C. (2012). Hyperelliptic curves and their invariants: geometric, arithmetic and algorithmic aspects. J. Algebra 372: 595–636.
  • Massey, W. S. (1991). A basic Course in Algebraic Topology, Vol. 127 of Graduate Texts in Mathematics. New York: Springer-Verlag.
  • Miranda, R. (1995). Algebraic curves and Riemann surfaces, Vol. 5 of Graduate Studies in Mathematics. Providence, RI: American Mathematical Society.
  • Magaard, K., Shaska, T., Shpectorov, S., Völklein, H. (2002). The locus of curves with prescribed automorphism group. Sūrikaisekikenkyūsho Kōkyūroku (1267): 112–141. Communications in arithmetic fundamental groups (Kyoto, 1999/2001).
  • Magaard, K., Shaska, T., Völklein, H. (2009). Genus 2 curves that admit a degree 5 map to an elliptic curve. Forum Math. 21(3): 547–566.
  • Mumford, D. (1974). Prym varieties. I. In Lars V. Ahlfors, Irwin Kra, Bernard Maskit and Louis Nirenberg (Editors), Contributions to analysis (a collection of papers dedicated to Lipman Bers), pp. 325–350.
  • Neukirch, J. (1999). Algebraic Number Theory, Vol. 322 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Berlin: Springer-Verlag.
  • Pantazis, S. (1986). Prym varieties and the geodesic flow on SO(n). Math. Ann. 273(2): 297–315.
  • Paulhus, J. (2008). Decomposing Jacobians of curves with extra automorphisms. Acta Arith. 132(3): 231–244.
  • Paulhus, J. (2015). Branching data for curves up to genus 48. Preprint and code. Available at https://paulhus.math.grinnell.edu/monodromy.html
  • Paulhus, J., Rojas, A. M. (2017). Completely decomposable Jacobian varieties in new genera. Exp. Math. 26(4): 430–445.
  • Recillas, S. (1974). Jacobians of curves with g41’s are the Prym’s of trigonal curves. Bol. Soc. Mat. Mexicana (2) 19(1): 9–13.
  • Recillas, S., Rodriguez, R. (2003). Prym varieties and fourfold covers.
  • Recillas, S., Rodríguez, R. E. (2006). Prym varieties and fourfold covers. II. The dihedral case. In The Geometry of Riemann Surfaces and Abelian Varieties, Vol. 397 of Contemp. Math. Providence, RI: Amer. Math. Soc., pp. 177–191.
  • Ritzenthaler, C., Romagny, M. (2018). On the Prym variety of genus 3 covers of genus 1 curves. Épijournal Geom. Algébrique 2: Art. 2, 8.
  • Serre, J.-P. (1978). Représentations linéaires des groupes finis, revised ed. Paris: Hermann.
  • Tsimerman, J. (2012). The existence of an Abelian variety over Q¯ isogenous to no Jacobian. Ann. Math. (2) 176(1): 637–650.
  • Unger, W. R. (2006). Computing the character table of a finite group. J. Symbolic Comput. 41(8): 847–862. doi:10.1016/j.jsc.2006.04.002
  • Vermeulen, A. (1983). Weierstrass points of weight two on curves of genus three. PhD thesis, University of Amsterdam, Amsterdam.
  • Weil, A. (1935). Über Matrizenringe auf Riemannschen Flächen und den Riemann - Rochsehen Satz. Abh. Math. Sem. Univ. Hamburg 11(1): 110–115. doi:10.1007/BF02940718

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.