111
Views
0
CrossRef citations to date
0
Altmetric
Special Issue on Illustration and Visualization in Mathematics Research

Real-Time Visualization in Anisotropic Geometries

&

References

  • Berger, M. (1961). Les variétés riemanniennes homogènes normales simplement connexes à courbure strictement positive. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, 3e série. 15(3): 179–246.
  • Berger, P. (2015). Espaces imaginaires. Available at http://www.espaces-imaginaires.fr/works/ExpoEspacesImaginaires2.html.
  • Berger, P. (2017). Esthétopies. Gazette des Mathematiciens, 154: 40–45. Available at http://134.206.83.16/Publications/Gazette/2017/154/smf_gazette_154_40-45.pdf.
  • Berger, P., Laier, A., Velho, L. (2015). An image-space algorithm for immersive views in 3-manifolds and orbifolds. Vis. Comput. 31(1): 93–104.
  • Bläsius, T., Friedrich, T., Katzmann, M., Krohmer, A. (2018). Hyperbolic embeddings for near-optimal greedy routing. In: Algorithm Engineering and Experiments (ALENEX), pp. 199–208.
  • Bölcskei, A., Szilágyi, B. (2007). Frenet formulas and geodesics in sol geometry. Beiträge zur Algebra und Geometrie. 48(2): 411–421.
  • Böröczky, K. (1974). Gömbkitöltések állandó görbületu terekben I. Matematikai Lapok, 25:265–306.
  • Cannon, J. W., Floyd, W. J., Kenyon, R., Parry, W. R. (1997). Hyperbolic geometry. In: In Flavors of Geometry. University Press, pp. 59–115. Available at http://www.msri.org/communications/books/Book31/files/cannon.pdf.
  • Celińska, D., Kopczyński, E. (2017). Programming languages in github: A visualization in hyperbolic plane. In: Proceedings of the Eleventh International Conference on Web and Social Media, ICWSM, Montréal, Québec, Canada, May 15-18, 2017, Palo Alto, CA: The AAAI Press, pp. 727–728.
  • Celińska-Kopczyńska, D., Kopczyński, E. (2021). Discrete hyperbolic random graph model. https://arxiv.org/abs/2109.11772
  • Celińska-Kopczyńska, D., Kopczyński, E. (2021). Generating tree structures for hyperbolic tessellations. https://arxiv.org/abs/2111.12040
  • Coiculescu, M. P. (2021). An interpolation from sol to hyperbolic space. Experimental Mathematics, doi:10.1080/10586458.2021.1980454
  • Coulon, R., Matsumoto, E., Segerman, H., Trettel, S. (2020). Non-euclidean virtual reality iii: Nil. In: Yackel, C., Bosch, R., Torrence, E., Fenyvesi, K., eds, Proceedings of Bridges 2020: Mathematics, Art, Music, Architecture, Education, Culture, Phoenix, AZ: Tessellations Publishing, pp. 153–160.
  • Coulon, R., Matsumoto, E., Segerman, H., Trettel, S. (2020). Non-euclidean virtual reality iv: Sol. In: Yackel, C., Bosch, R., Torrence, E., Fenyvesi, K., eds, Proceedings of Bridges 2020: Mathematics, Art, Music, Architecture, Education, Culture, Phoenix, AZ: Tessellations Publishing, pp. 161–168.
  • Coulon, R., Matsumoto, E. A., Segerman, H., Trettel, S. J. (2020). Ray-marching thurston geometries. https://arxiv.org/abs/2010.15801
  • Divjak, B., Erjavec, Z., Szabolcs, B., Szilágyi, B. (2009). Geodesics and geodesic spheres in SL(2; R) geometry. Math. Commun. 14(2): 413–424.
  • Floyd, W. J., Weber, B., Weeks, J. R. (2002). The achilles’ heel of o(3, 1)? Exp. Math. 11(1): 91–97.
  • Gegenberg, J., Vaidya, S., Vázquez-Poritz, J. F. (2002). Thurston geometries from eleven dimensions. Class. Quantum Gravity. 19(23): L199–L204. doi:10.1088/0264-9381/19/23/102
  • Gu, A., Sala, F., Gunel, B., and Ré, C. (2019). Learning mixed-curvature representations in product spaces. In: Proc. ICLR, pp. 1–21. OpenReview.net.
  • Gunn, C. (1993). Discrete groups and the visualization of three-dimensional manifolds. In: SIGGRAPH 1993 Proceedings. ACM SIGGRAPH, ACM, pp. 255–262.
  • Hamilton, L., Moitra, A. (2021). No-go theorem for acceleration in the hyperbolic plane. Advances in Neural Information Processing Systems 34 (NeurIPS 2021). https://arxiv.org/abs/2101.05657
  • Hart, V., Hawksley, A., Matsumoto, E. A., Segerman, H. (2017). Non-Euclidean virtual reality I: explorations of ℍ3. In: Proceedings of Bridges: Mathematics, Music, Art, Architecture, Culture, Phoenix, AZ: Tessellations Publishing, pp. 33–40.
  • Kopczyński, E., Celińska, D., Čtrnáct, M. (2017). HyperRogue: Playing with hyperbolic geometry. In: Proceedings of Bridges: Mathematics, Art, Music, Architecture, Education, Culture, Phoenix, AZ: Tessellations Publishing, pp. 9–16.
  • Kopczyński, E., Celińska-Kopczyńska, D. (2021). Dynamic distances in hyperbolic graphs. https://arxiv.org/abs/2111.01019
  • Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L. (2017). Sphereface: Deep hypersphere embedding for face recognition. In: Proc. CVPR, New York City: IEEE, pp. 6738–6746.
  • Löh, C. (2017). Geometric Group Theory: An Introduction. Universitext. Cham: Springer.
  • MagmaMcFry. (2019). Solvview. Available at https://github.com/MagmaMcFry/SolvView.
  • Margenstern, M. (2014). Pentagrid and heptagrid: The fibonacci technique and group theory. J. Autom. Lang. Comb. 19(1–4): 201–212.
  • Munzner, T. (1997). H3: laying out large directed graphs in 3d hyperbolic space. In: 1997 IEEE Symposium on Information Visualization (InfoVis ’97), October 18–25, 1997, Phoenix, AZ, USA. IEEE Computer Society, pp. 2–10.
  • Munzner, T. (1998). Exploring large graphs in 3d hyperbolic space. IEEE Comput. Graph. Appl. 18(4): 18–23.
  • Munzner, T., Burchard, P. (1995). Visualizing the structure of the world wide web in 3d hyperbolic space. In: Nadeau, D. R., Moreland, J. L. eds, Proceedings of the 1995 Symposium on Virtual Reality Modeling Language, VRML, December 14–15, 1995, San Diego, CA: ACM, pp. 33–38.
  • Novello, T., da Silva, V., Velho, L. (2019). Visualization of Nil, SL2 and Sol. Available at https://www.visgraf.impa.br/ray-vr/?page\_id=252.
  • Ontrup, J., Ritter, H. (2001). Hyperbolic self-organizing maps for semantic navigation. In: Proc. NIPS, Cambridge, MA: MIT Press, pp. 1417–1424.
  • Papadopoulos, F., Kitsak, M., Angeles Serrano, M., Boguñá, M., Krioukov, D. (2012). Popularity versus similarity in growing networks. Nature. 489:537–540. doi:10.1038/nature11459
  • Papp, D., Molnár, E. (2020). Visualization of Nil-geometry; modelling Nil-geometry in Euclidean space with software presentation. Available at doi:10.25596/jalc-2014-201.
  • Perelman, G. (2006). The Entropy formula for the Ricci flow and its geometric applications. arXiv math/0211159.
  • Phillips, M., Gunn, C. (1992). Visualizing hyperbolic space: Unusual uses of 4x4 matrices. In: Proc. I3D, New York, NY: Association for Computing Machinery, pp. 209–214
  • Ritter, H. (1999). Self-organizing maps on non-euclidean spaces. In: Oja, E., Kaski, S., eds, Kohonen Maps. Amsterdam: Elsevier, pp. 97–108.
  • Sala, F., De Sa, C., Gu, A., Re, C. (2018). Representation tradeoffs for hyperbolic embeddings. In: Proc. ICML, Stockholmsmässan, Stockholm Sweden, 2018, PMLR, pp. 4460–4469.
  • Thurston, W. P. (1982). Three dimensional manifolds, Kleinian groups and hyperbolic geometry. Bull. Am. Math. Soc. (New Series) 6(3): 357–381. doi:10.1090/S0273-0979-1982-15003-0
  • Troyanov, M. (1998). L’horizon de sol. Expo. Math. 16:441–479.
  • Weeks, J. (2002). Real-time rendering in curved spaces. IEEE Comput. Graph. Appl. 22(6): 90–99.
  • Weeks, J. (2006). Real-time animation in hyperbolic, spherical, and product geometries. In: Molnár, E., Prékopa, A., ed, Non-Euclidean Geometries. Mathematics and Its Applications, vol. 581. Boston, MA: Springer, pp. 287–305.
  • Weeks, J. R. (2001). The Shape of Space. Pure and Applied Mathematics. Boca Raton, FL: Chapman & Hall/CRC.
  • Wilson, R. C., Hancock, E. R., Pekalska, E., Duin, R. P. W. (2014). Spherical and hyperbolic embeddings of data. IEEE Trans. Pattern Anal. Mach. Intell. 36(11): 2255–2269.
  • Yu, T., De Sa, C. M. (2019). Numerically accurate hyperbolic embeddings using tiling-based models. In Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., Garnett, R., eds. Advances in Neural Information Processing Systems, Vol. 32. Red Hook; NY: Curran Associates, Inc.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.