185
Views
5
CrossRef citations to date
0
Altmetric
Articles

Hysteresis loop as the indicator of residual stress in drawn wires

, &
Pages 123-132 | Received 15 May 2013, Accepted 21 Oct 2013, Published online: 16 Jan 2014

REFERENCES

  • StupakovO, TakagiT, UchimotoT. Alternative magnetic parameters for characterization of plastic tension. NDT E Int. 2010;43:671–676.
  • WangZ, GuY, WangYS. A review of three magnetic NDT techniques. J Magn Magn Mater. 2012;324:382–388.
  • RoskoszM, BieniekM. Evaluation of residual stress in ferromagnetic steels based on residual stress measurements. NDT E Int. 2012;45:55–62.
  • XinQ, ShuD, HuiL, WeiW, ChenJ. Magnetic Barkhausen noise, metal magnetic memory testing and estimation of the ship plate welded structure stress. J Nondestruct Eval. 2012;31:80–89.
  • FrancoFE, GonzalezMFR, de CamposMF, PadoveseLR. Relation between magnetic Barkhausen noise and hardness for Jominy quench tests in SAE4140 and 6150 steels. J Nondestruct Eval. 2013;32:93–103.
  • RoskoszM, BieniekM. Analysis of the universality of the residual stress evaluation method based on residual magnetic field measurements. NDT E Int. 2013;54:63–68.
  • SuligaM. Analysis of the multipass steel wire drawing with high speed in conventional and hydrodynamical dies (Analiza wielostopniowego ciagnienia drutow stalowych z duzymi predkosciami w ciagadlach konwencjonalnych i hydrodynamicznych – in Polish), monograph No. 32. Czestochowa University of Technology, Publishing House of the Faculty of Process and Materials Engineering and Applied Physics: Czestochowa; ISBN 978-83-63989-06-4, ISSN 2080-20722013.
  • LeeSK, KimDW, JeongMS, KimBM. Evaluation of axial surface residual stress in 0.82-wt% carbon steel wire during multi-pass drawing process considering heat generation. Mater Des. 2012;34:363–371.
  • AtienzaJM, ElicesM. Influence of residual stresses in the tensile test of cold drawn wires. Mater Struct. 2003;36:548–552.
  • AtienzaJM, Martinez-PerezML, Ruiz-HerviasJ, MompeanF, Garcia-HernandezM, ElicesM. Residual stresses in cold drawn ferritic rods. Scripta Mater. 2005;52:305–309.
  • KruzelR, SuligaM. The effect of multiple bending of wire on the residual stresses of high carbon steel wires. Metalurgija. 2013;52(1):93–95.
  • TottenG, HowesM, InoueT, editors. Handbook of residual stress and deformation of steel. ASM International: Ohio; 2002.
  • HeS, BaelAV, LiSY, HouttePV, MeiF, SarbanA. Residual stress determination in cold drawn steel wire by FEM simulation and X-ray diffraction. Mater Sci Eng A. 2003;346:101–107.
  • KoDC, LeeSK, HwangWH, KimBM, BaeCM. The evaluation of residual stress on the drawn wire using nano-indentation test. J Mater Process Technol. 2007;191:64–67.
  • SuligaM. The influence of the multipass drawing process in classical and hydrodynamic dies on residual stresses of high carbon steel wires. Arch Metall Mater. 2011;56:939–944.
  • PreisachF. On the magnetic aftereffect (Ueber die magnetische Nachwirkung). Z Phys. 1935;94:277–302.
  • MayergoyzID. Mathematical models of hysteresis and their applications. Elsevier: New York; 2003.
  • StonerEC, WohlfarthEP. A mechanism of magnetic hysteresis in heterogenous alloys. Philos Trans R Soc A. 1948;240:599–642.
  • JilesDC, AthertonDL. Theory of the magnetisation process in ferromagnets and its application to the magnetomechanical effect. J Phys D: Appl Phys. 1984;17:1265–1281.
  • JilesDC. Theory of the magnetomechanical effect. J Phys D: Appl Phys. 1995;28:1537–1546.
  • VisoneC, SerpicoC. Hysteresis operators for the modeling of magnetostrictive materials. Physica B. 2001;306:78–83.
  • MelikhovY, JilesDC, TomasI, LoCC, PerevertovO, KadlecovaJ. Investigation of sensivity of Preisach analysis for nondestructive testing. IEEE Trans Magn. 2001;37:3907–3912.
  • CallegaroL, PuppinE. Rotational hysteresis model for stressed ferromagnetic films. IEEE Trans Magn. 1997;33:1007–1011.
  • DimitropoulosPG, StamoulisGI, HristoforouE. A 3-D hybrid Jiles–Atherton/Stoner–Wohlfarth magnetic hysteresis model for inductive sensorsand actuators. IEEE Sens J. 2006;6:721–726.
  • KtenaA, HristoforouE. Stress dependent magnetization and vector Preisach modeling in low carbon steels. IEEE Trans Magn. 2012;48:1433–1436.
  • SablikMJ, KwunH, BurkhardtGL, JilesDC. Model for the effect of tensile and compressive stress on ferromagnetic hysteresis. J Appl Phys. 1987;61:3799–3801.
  • StevensKJ. Stress dependence of ferromagnetic hysteresis for two grades of steel. NDT E Int. 2000;33:111–121.
  • SzewczykR, BienkowskiA. Application of the energy-based model for the magnetoelastic properties of amorphous alloys. J Magn Magn Mater. 2004;272–274:728–730.
  • LiL, JilesDC, LoCCH. CP760, Review of quantitative nondestructive evaluation. An improved model description of the effects of stress on ferromagnetic materials. American Institute of Physics: Colorado; 2005. p. 1394–1399.
  • ValadkanS, MorrisK, ShumA. A new load-dependent hysteresis model for magnetostrictive materials. Smart Mater Struct. 2010;19, p. 125003 (10 pp.).
  • ChangG, ZhuS, LouJ. Load dependent hysteresis model for GMM and its parameters identification. Appl Mech Mater. 2012;226–228:2385–2389.
  • ZhangW, MaoJ. Robust intelligent modeling for giant magnetostrictive actuators with rate-dependent hysteresis. Int J Intell Comput Cybern. 2012;5:505–514.
  • ChwastekK. Modelling offset minor hysteresis loops with the modified Jiles–Atherton description. J Phys D. 2009;42, p. 165002 (5pp.).
  • BaghelAPS, KulkarniSV. Hysteresis modeling of the grain-oriented laminations with inclusion of crystalline and textured structure in a modified Jiles–Atherton model. J Appl Phys. 2013;113, p. 043908 (5 pp.).
  • ZirkaSE, MorozYI, HarrisonRG, ChwastekK. On physical aspects of the Jiles–Atherton hysteresis models. J Appl Phys. 2012;112, p. 043916 (7 pp.).
  • TakácsJ. A phenomenological mathematical model of hysteresis. COMPEL. 2001;20:1014–1022.
  • TakácsJ. Mathematics of hysteretic phenomena. Wiley-VCH: Weinheim; 2003.
  • WeissP. The hypothesis of the effective field and the magnetic property (L'hypothese du champ moleculaire et la propriete ferromagnetique). J Phys. 1907;6:661–690.
  • AndreiP, StancuA, HauserH, FulmekP. Temperature, stress, and rate dependent numerical implementation of magnetization processes in phenomenological models. J Optoelectron Adv Mater. 2007;9:1137–1139.
  • ChwastekK. A dynamic extension to the Takács model. Physica B. 2010;405:3800–3802.
  • SchneiderCS. Anisotropic cooperative theory of coaxial ferromagnetoelasticity. Physica B. 2004;343:65–74.
  • SablikMJ, JilesDC. A model for hysteresis in magnetostriction. J Appl Phys. 1988;64:5402–5404.
  • TakácsJ. Analytical solutions to eddy current and excess losses. COMPEL. 2005;24:1402–1414.
  • WolbergJ. Data analysis using the method of least squares (Extracting the most information from experiments). Springer: Heidelberg; 2006.
  • MakarJ, TannerBK. The in situ measurement of the effect of plastic deformation on the magnetic properties of steel. Part 1 – hysteresis loops and magnetostriction. J Magn Magn Mater. 1998;184:193–208.
  • HonoK, OhnumaM, MurayamaM, NishidaS, YoshieA, TakahashiT. Cementite decomposition in heavily drawn pearlite steel wire. Scripta Mater. 2001;44:977–983.
  • ZelinM. Microstructure evolution in pearlitic steels during wire drawing. Acta Mater. 2002;50:4431–4447.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.