345
Views
11
CrossRef citations to date
0
Altmetric
Articles

In situ stress monitoring of the concrete beam under static loading with cement-based piezoelectric sensors

, , , , , & show all
Pages 312-326 | Received 22 Dec 2014, Accepted 27 Apr 2015, Published online: 18 Jun 2015

References

  • Rosalie C, Chan A, Chiu WK, Galea SC, Rose F, Rajic N. Structural health monitoring of composite structures using stress wave methods. Compos Struct. 2005;67(2):157–166. doi:10.1016/j.compstruct.2004.09.016.
  • Bhalla S, Yang YW, Zhao J, Soh CK. Structural health monitoring of underground facilities – technological issues and challenges. Tunnell Underground Space Technol. 2005;20(5):487–500. doi:10.1016/j.tust.2005.03.003.
  • Park G, Rutherford AC, Sohn H, Farrar CR. An outlier analysis framework for impedance-based structural health monitoring. J Sound Vib. 2005;286(1–2):229–250. doi:10.1016/j.jsv.2004.10.013.
  • Barnes CL, Trottier J-F, Forgeron D. Improved concrete bridge deck evaluation using GPR by accounting for signal depth-amplitude effects. NDT&E Int. 2008;41(6):427–433. doi:10.1016/j.ndteint.2008.03.005.
  • Chang FK. Structural health monitoring: a summary report on the first international workshop on structural health monitoring, September 18–20, 1997. Proceedings of the second international workshop on structural health monitoring, Stanford, CA, September 8–10, 1999. Lancaster-Basel, Technomic Publishing Co, Inc, pp. 19–29.
  • Acciani G, Fornarelli G, Giaquinto A, Maiullari D. Nondestructive evaluation of defects in concrete structures based on finite element simulations of ultrasonic wave propagation. Nondestruct Test Eval. 2010;25(4):289–315. doi:10.1080/10589751003658057.
  • Sack DA, Olson LD. Advanced NDT methods for evaluating concrete bridges and other structures. NDT&E Int. 1995;28(6):349–357. doi:10.1016/0963-8695(95)00045-3.
  • McCann DM, Forde MC. Review of NDT methods in the assessment of concrete and masonry structures. NDT&E Int. 2001;34(2):71–84. doi:10.1016/S0963-8695(00)00032-3.
  • Sagar RV, Prasad BK. A review of recent developments in parametric based acoustic emission techniques applied to concrete structures. Nondestruct Test Eval. 2012;27(1):47–68. doi:10.1080/10589759.2011.589029.
  • Rétornaz T, Friedt J-M, Alzuaga S, Baron T, Lebrasseur É, Martin G, et al. Piezoelectric radiofrequency transducers as passive buried sensors. Nondestruct Test Eval. 2012;27(3):209–218. doi:10.1080/10589759.2012.674524.
  • Yim HJ, Kwak HG, Kim JH. Wave attenuation measurement technique for nondestructive evaluation of concrete. Nondestruct Test Eval. 2012;27(1):81–94. doi:10.1080/10589759.2011.606319.
  • Yang K, Basheer PAM, Bai Y, Magee BJ, Long AE. Development of a new in situ test method to measure the air permeability of high performance concretes. NDT&E Int. 2014;64:30–40. doi:10.1016/j.ndteint.2014.02.005.
  • Matsumoto E, Biwa S, Katsumi K, Omoto Y, Iguchi K, Shibata T. Surface strain sensing with polymer piezoelectric film. NDT&E Int. 2004;37(1):57–64. doi:10.1016/j.ndteint.2003.08.006.
  • Liu SC, Tomizuka M, Ulsoy G. Strategic issues in sensors and smart structures. Struct Control Health Monit. 2006;13(6):946–957. doi:10.1002/stc.88.
  • Neville AM. Properties of concrete. 4th Edition. Longman Group Ltd: UK; 1996.
  • Kamada T, Fujita T, Hatayama T, Arikabe T, Murai N, Aizawa S, et al. Active vibration control of frame structures with smart structures using piezoelectric actuators (vibration control by control of bending moments of columns). Smart Mater Struct. 1997;6(4):448–456. doi:10.1088/0964-1726/6/4/009.
  • Staszewski WJ, Boller C, Grondel S, Biemans C, O'Brien E, Delebarre C, Tomlinson GR. Damage detection using stress and ultrasonic waves. In: Staszewski W, Boller C, Tomlinson GR, editors. Health monitoring of aerospace structures: smart sensor technologies and signal processing. London: Wiley; 2004, pp. 141–162.
  • Liang C, Sun F, Rogers CA. Coupled electro-mechanical analysis of adaptive material systems – determination of the actuator power consumption and system energy transfer. J Intell Mater Syst Struct. 1994;5(1):12–20. doi:10.1177/1045389X9400500102.
  • Banks HT, Smith RC, Wang Y. Smart material structures: modeling, estimation and control. New York, NY: Wiley; 1996.
  • Wang CS, Chang FK. Built-in diagnostics for impact damage identification of composite structures. Proceedings of the second international workshop on structural health monitoring. Lancaster, Pennsylvania, USA: Technomic Publishing Company, Inc.; 1999. p. 612–621.
  • George EP, Gotthardt R, Otsuka K, Trolier-McKinstry S, Wun-Fogle M. Materials for smart systems II. Symposium proceedings of Materials Research Society. Vol. 459. Pittsburgh, USA: Materials Research Society; 1997, pp. 489–493.
  • Zhang J, Lu Y, Lu Z, Liu C, Sun G, Li Z. A new smart traffic monitoring method using embedded cement-based piezoelectric sensors. Smart Mater Struct. 2015;24(2) : 025023 (8 pp). 10.1088/0964-1726/24/2/025023.
  • Li ZJ, Dong BQ. 0–3 Cement-based piezoelectric ceramic composite. Proceedings of SPIE on ‘Smart structures and materials 2003 and nondestructive evaluation for health monitoring and diagnostics 2003’. Society of Photo Optical; Cdr edition. San Diego, USA; 2003, pp. 219–230.
  • Li ZJ, Dong BQ. Cement-based piezoelectric ceramic functional composite. International symposium on macro-, meso-, micro- and nano-mechanics of materials (MM03). Uetikon-Zuerich, Switzerland: Trans Tech Publications Ltd. Hong Kong, People's Republic of China, Dec. 2003, pp. 161–169.
  • Li ZJ, Dong BQ, Zhang D. Influence of polarization on properties of 0–3 cement-based PZT composites. Cement Concrete Compos. 2005;27(1):27–32. doi:10.1016/j.cemconcomp.2004.02.001.
  • Dong BQ, Li ZJ. Cement-based piezoelectric ceramic smart composites. Compos Sci Technol. 2005;65(9):1363–1371. doi:10.1016/j.compscitech.2004.12.006.
  • Dong BQ, Xing F, Li ZJ. Cement-based piezoelectric ceramic composite and its sensor applications in civil engineering. ACI Mater J. 2011;108:543–549.
  • Dong BQ, Xing F, Li ZJ. Electrical response of cement-based piezoelectric ceramic composites under mechanical loadings. Smart Mater Res. doi:10.1155/2011/236719 2011.
  • Li Z, Huang S, Qin L, Cheng X. An investigation on 1–3 cement based piezoelectric composites. Smart Mater Struct. 2007;16(4):999–1005. doi:10.1088/0964-1726/16/4/007.
  • Qin L, Huang S, Cheng X, Lu Y, Li Z. The application of 1–3 cement-based piezoelectric transducers in active and passive health monitoring for concrete structures. Smart Mater Struct. 2009;18(9):095018. doi:10.1088/0964-1726/18/9/095018.
  • Wang X, Ehlers C, Neitzel M. Electro-mechanical dynamic analysis of the piezoelectric stack. Smart Mater Struct. 1996;5(4):492–500. doi:10.1088/0964-1726/5/4/013.
  • IEEE Standard on Piezoelectricity. American National Standards Institute. Washington, DC. 1987.
  • Pak YE. Linear electro-elastic fracture mechanics of piezoelectric materials. Int J Fracture. 1992;54(1):79–100. doi:10.1007/BF00040857.
  • Suo Z, Kuo C-M, Barnett DM, Willis JR. Fracture mechanics for piezoelectric ceramics. J Mech Phys Solids. 1992;40(4):739–765. doi:10.1016/0022-5096(92)90002-J.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.