506
Views
31
CrossRef citations to date
0
Altmetric
Articles

Application of electromechanical impedance-based SHM for damage detection in bolted pipeline connection

, , , &
Pages 17-44 | Received 01 Jan 2015, Accepted 01 Jun 2015, Published online: 26 Aug 2015

References

  • Kim J-W, Lee C, Park S. Damage localization for CFRP-debonding defects using piezoelectric SHM techniques. Res Nondestr Eval. 2012;23:183–196. doi:10.1080/09349847.2012.660244.
  • Wait JR, Park G, Farrar CR. Integrated structural health assessment using piezoelectric active sensors. Shock Vibr. 2005;12:389–405. doi:10.1155/2005/250912.
  • Tseng KK, Wang L. Smart piezoelectric transducers for in situ health monitoring of concrete. Smart Mater Struct. 2004;13:1017–1024. doi:10.1088/0964-1726/13/5/006.
  • Park G, Inman DJ. Structural health monitoring using piezoelectric impedance measurements. Phil Trans R Soc A. 2007;365:373–392. doi:10.1098/rsta.2006.1934.
  • Sun FP, Chaudhry Z, Liang C, Rogers CA. Truss structure integrity identification using PZT sensor–actuator. J Intell Mater Syst Struct. 1995;6:134–139. doi:10.1177/1045389X9500600117.
  • Lim YY, Soh CK. Electro-mechanical impedance (EMI)-based incipient crack monitoring and critical crack identification of beam structures. Res Nondestr Eval. 2014;25:82–98. doi:10.1080/09349847.2013.848311.
  • Cherrier O, Selva P, Pommier-Budinger V, Lachaud F, Morlier J. Damage localization map using electromechanical impedance spectrums and inverse distance weighting interpolation: experimental validation on thin composite structures. Struct Health Monit. 2013;12:311–324. doi:10.1177/1475921713493343.
  • Park S, Park SK. Quantitative corrosion monitoring using wireless electromechanical impedance measurements. Res Nondestr Eval. 2010;21:184–192. doi:10.1080/09349847.2010.493991.
  • Peairs DM, Park G, Inman DJ. Improving accessibility of the impedance-based structural health monitoring method. J Intell Mater Syst Struct. 2004;15:129–139. doi:10.1177/1045389X04039914.
  • Giurgiutiu V. Structural health monitoring with piezoelectric wafer active sensors. Amsterdam: Elsevier Academic Press; 2008.
  • Park G., Sohn H., Farrar C.R., Inman D.J., Park G, Sohn H, Farrar CR. Overview of piezoelectric impedance-based health monitoring and path forward. Shock Vibr. 2003;35:451–463. doi:10.1177/05831024030356001.
  • Rosiek M, Dragan K, Martowicz A, Uhl T. Damage detection in riveted aircraft elements based on the electromechanical impedance measurements. Key Eng Mater. 2014;588:54–63. 10.4028/www.scientific.net/KEM.588.54.
  • Ayres JW, Lalande F, Chaudhry Z, Rogers CA. Qualitative impedance-based health monitoring of civil infrastructures. Smart Mater Struct. 1998;7:599–605. doi:10.1088/0964-1726/7/5/004.
  • Park G, Cudney HH, Inman DJ. Feasibility of using impedance-based damage assessment for pipeline structures. Earthq Eng Struct Dyn. 2001;30:1463–1474. doi:10.1002/eqe.72.
  • Martowicz A, Rosiek M. Electromechanical impedance method. In: Stepinski T, Uhl T, Staszewski WJ, editors. Advanced structural damage detection: from theory to engineering applications. Wiley; 2013. p. 141–176.
  • Park G, Sohn H, Farrar CR, Inman DJ. Overview of piezoelectric impedance-based health monitoring and path forward. Shock Vibr Digest. 2003;35:451–463. doi:10.1177/05831024030356001.
  • Park G, Inman DJ. Impedance-based structural health monitoring. In: Inman DJ, Farrar CR, Lopes V Jr., Steffen V Jr., editors. Damage prognosis for aerospace, civil and mechanical systems. Chichester: Wiley; 2005. p. 275–292.
  • Hong Y, Han BH, Kim BJ, Hong DP, Kim YM. Estimation for bolt fastening conditions of thin aluminum structure using PZT sensors. J Mech Sci Technol. 2007;21:891–895. doi:10.1007/BF03027064.
  • Rosiek M. Damage detection of mechanical structures based on electromechanical impedance measurements  [PhD Thesis]. Krakow: AGH University of Science and Technology; 2014.
  • Bhalla S, Naidu ASK, Soh CK. Influence of structure–actuator interactions and temperature on piezoelectric mechatronic signatures for NDE. Proceedings of the SPIE 5062, Smart Materials, Structures, and Systems, Conference Volume 5062, 263; 2003.
  • Park S, Yun C-B, Inman DJ. Structural health monitoring using electro-mechanical impedance sensors. Fatigue Fract Eng Mater Struct. 2008;31:714–724. doi:10.1111/j.1460-2695.2008.01248.x.
  • Luo Z, Cao H, Meng L, Lin L. Influences of mechanical contact on damage evaluation with electromechanical impedance technique. J Intell Mater Syst Struct. 2014;25:321–331. doi:10.1177/1045389X13493356.
  • Lim YY, Soh CK. Damage detection and characterization using EMI technique under varying axial load. Smart Struct Syst. 2013;11:349–364. doi:10.12989/sss.2013.11.4.349.
  • Liang C.C., Sun F.P.F., Rogers C.A., Liang C, Rogers CA. Coupled electro-mechanical analysis of adaptive material systems – determination of the actuator power consumption and system energy transfer. J Intell Mater Syst Struct. 1994;5:12–20. doi:10.1177/1045389X9400500102.
  • Mascarenas DL, Park G, Farinholt KM, Todd MD, Farrar CR. A low-power wireless sensing device for remote inspection of bolted joints. Proc Inst Mech Eng G J Aerosp Eng. 2009;223:565–575. doi:10.1243/09544100JAERO378.
  • Rosiek M, Martowicz A, Uhl T, Stąpinski T, Łukomski T. Electromechanical impedance method for damage detection on mechanical structures. Proceedings of the 11th IMEKO TC 10 Workshop on smart diagnostics of structures; Krakow; 2010.
  • Martowicz A, Rosiek M, Uhl T. SHM system based on impedance measurements. Diagnostyka. 2011;3:3–8.
  • Park G, Rutherford AC, Sohn H, Farrar CR. An outlier analysis framework for impedance-based structural health monitoring. J Sound Vibr. 2005;286:229–250. doi:10.1016/j.jsv.2004.10.013.
  • Rosiek M, Martowicz A, Uhl T. Electromechanical impedance based SHM system for aviation applications. Key Eng Mater. 2012;518:127–136. 10.4028/www.scientific.net/KEM.518.127.
  • Peairs DM, Grisso BL, Margasahayam RN, Page KR, Inman DJ. Impedance-based health monitoring of space shuttle ground structures. In: Kundu T, editor. Proceedings of SPIE, health monitoring and smart nondestructive evaluation of structural and biological systems, Vol. 5394 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. San Diego, CA; 2004. p. 99–107.
  • Peairs DM, Park G, Inman DJ. Practical issues of activating self-repairing bolted joints. Smart Mater Struct. 2004;13:1414–1423. doi:10.1088/0964-1726/13/6/012.
  • Mascarenas DL, Todd MD, Park G, Farrar CR. Development of an impedance-based wireless sensor node for structural health monitoring. Smart Mater Struct. 2007;16:2137–2145. doi:10.1088/0964-1726/16/6/016.
  • Park G, Farrar CR, Lanza di Scalea F, Coccia S. Performance assessment and validation of piezoelectric active-sensors in structural health monitoring. Smart Mater Struct. 2006;15:1673–1683. doi:10.1088/0964-1726/15/6/020.
  • Dove JR, Park G, Farrar CR. Hardware design of hierarchal active-sensing networks for structural health monitoring. Smart Mater Struct. 2006;15:139–146. doi:10.1088/0964-1726/15/1/042.
  • Peairs D, Park G, Inman DJ. Self-healing bolted joint analysis. Proceedings of 20th International Modal Analysis Conference, Los Angeles, CA. 2002.
  • Park S, Inman DJ, Yun C-B. An outlier analysis of MFC-based impedance sensing data for wireless structural health monitoring of railroad tracks. Eng Struct. 2008;30:2792–2799.
  • Park S, Lee J-J, Yun C-B, Inman DJ. Electro-mechanical impedance-based wireless structural health monitoring using PCA-data compression and k-means clustering algorithms. J Intell Mater Syst Struct. 2008;19:509–520. doi:10.1177/1045389X07077400.
  • Park V Jr, Cudney G, Inman HH, Jr DJ. Impedance-based structural health monitoring with artificial neural networks. J Intell Mater Syst Struct. 2000;11:206–214. doi:10.1106/H0EV-7PWM-QYHW-E7VF.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.