790
Views
39
CrossRef citations to date
0
Altmetric
Original Articles

Delamination localization in wind turbine blades based on adaptive time-of-flight analysis of noncontact laser ultrasonic signals

, , &
Pages 1-20 | Received 26 May 2015, Accepted 18 Nov 2015, Published online: 20 Jan 2016

References

  • Global Wind Energy Council. Global wind report 2014. Global Wind Energy Council; 2015. Brussels, Belgium.
  • Wind Measurement International. Operational and maintenance costs for wind turbines [Internet]; [cited 2015 May 26]. Available from: http://www.windmeasurementinternational.com/wind-turbines/om-turbines.php
  • Peters VA, Ogilvie AB, Bond CR. Continuous reliability enhancement for wind (CREW) database: wind plant reliability benchmark. Albuquerque (New Mexico): Sandia National Laboratories (US); 2012.
  • Schroeder K, Ecke W, Apitz J, et al. A fibre Bragg grating sensor system monitors operational load in a wind turbine rotor blade. Meas. Sci. Technol. 2006;17:1167–1172.10.1088/0957-0233/17/5/S39
  • Shin CS, Chen Bl, Cheng JR, et al. Impact response of a wind turbine blade measured by distributed FBG sensors. Mater Manuf. Process. 2010;25:268–271.10.1080/10426910903426448
  • Joose PA, Blanch MJ, Dutton AG, et al. Acoustic emission monitoring of small wind turbine blades. J. Sol. Energy Eng. 2002;124:446–454.10.1115/1.1509769
  • Xu L, Tian W, Mao E. Kinematics simulation of vertical flange lathe with double machining tools based on virtual prototype technology. Appl. Mech. Mater. 2011;101–102:302–305.10.4028/www.scientific.net/AMM.101-102
  • Light-Marquez A, Sobin A, Park G. et al. Structural damage identification in wind turbine blades using piezoelectric active sensing. In: Prolux T, editor. Structural dynamics and renewable energy, Vol. 1. Springer New York (NY); 2011. p. 55–65.
  • Gangbing S, Hui L, Bosko G, et al. Wind turbine blade health monitoring with piezoceramic-based wireless sensor network. Int. J. Smart Nano Mater. 2013;4:150–166.
  • Niezrecki C, Avitabile P, Chen Julie, et al. Inspection and monitoring of wind turbine blade-embedded wave defects during fatigue testing. Struct Health Monit. 2014;13:629–643.10.1177/1475921714532995
  • Ruan J, Ho SCM, Patil D, et al. Wind turbine blade damage detection using an active sensing approach. Smart Mater Struct. 2014;23: 10.
  • Raisutis R, Jasiuniene E, Zukauskas E. Ultrasonic NDT of wind turbine blades using guided waves. Ultrasound. 2008;63:7–11.
  • Fantidis JG, Potolias C, Bandekas DV. Wind turbine blade nondestructive testing with a transportable radiography system. Sci. Technol. Nucl. Ins. 2011;2011:6.
  • Rumsey MA, Musial W. Application of infrared thermography nondestructive testing during wind turbine blade tests. J. Sol. Energy Eng. 2001;123:271.10.1115/1.1409560
  • Manohar A, Scalea FL di. Detection of defects in wind turbine composite blades using statistically enhanced lock-in thermography. 2013;12:566–574.
  • Linag C. Eddy current pulsed thermography for non-destructive evaluation of carbon fibre reinforced plastic for wind turbine blades [dissertation]. Newcastle: Newcastle University; 2013.
  • Caron JN, DiComo GP, Nikitin S. Generation of ultrasound in materials using continuous-wave lasers. Opt. Lett. 2012;37:830–832.10.1364/OL.37.000830
  • Kim H, Jhang K, Shin M, et al. A noncontact NDE method using a laser generated focused-lamb wave with enhanced defect-detection ability and spatial resolution. NDT&E Int. 2006;39:312–319.
  • An Y-K, Park B., Sohn, H. Complete noncontact laser ultrasonic imaging for automated crack visualization in a plate. Smart Mater. Struct. 2013;22:025022.10.1088/0964-1726/22/2/025022
  • Staszewski WJ, Lee BC, Traynor R. Fatigue crack detection in metallic structures with lamb waves and 3D laser vibrometry. Meas. Sci. Technol. 2007;18:727–739.10.1088/0957-0233/18/3/024
  • Michaels TE, Michaels JE, Ruzzene M. Frequency–wavenumber domain analysis of guided wavefields. Ultrasonics. 2011 2013;51:452–466.
  • Zhou C, Su Z, Cheng L. Probability-based diagnostic imaging using hybrid features extracted from ultrasonic lamb wave signals. Smart Mater. Struct. 2011;20:14.10.1088/0964-1726/20/12/125005
  • Wandowski T, Malinowski P, Ostachowicz W. Damage detection with concentrated configurations of piezoelectric transducers. Smart Mater. Struct. 2011;20:025002.10.1088/0964-1726/20/2/025002
  • Gannon, A, et al. A high-speed dual-stage ultrasonic guided wave system for localization and characterization of defects. Structural health monitoring and damage detection, Vol. 7; Springer International Publishing; 2015; p. 123–136.
  • Michaels, JE, et al. Approaches to hybrid SHM and NDE of composite aerospace structures. Proc. SPIE 9064, Health Monitoring of Structural and Biological Systems 2014, 906427 (9 March 2014); doi: 10.1117/12.2045172
  • Davies SJ, Edwards C, Taylor GS, et al. Laser-generated ultrasound: its properties, mechanisms and multifarious applications. J. Phys. D: Appl. Phys. 1993;26:329–348 10.1088/0022-3727/26/3/001.
  • Hutchins DA. Mechanisms of pulsed photoacoustic generation. Can. J. Phys. 1986;64:1247–1264.10.1139/p86-217
  • Castellini P, Martarelli M, Tomasini EP. Laser doppler vibrometry: development of advanced solutions answering to technology’s needs. Mech. Syst. Signal Process. 2006;20:1265–1285.10.1016/j.ymssp.2005.11.015
  • Martin P, Rothberg S. Introducing speckle noise maps for Laser vibrometry. Opt. Laser Eng. 2009;47:431–442.10.1016/j.optlaseng.2008.06.010
  • Park B, An Y-K, Sohn H. Visualization of hidden delamination and debonding in composites through noncontact laser ultrasonic scanning. Compos. Sci. Technol. 2014;100:10–18.10.1016/j.compscitech.2014.05.029
  • Malinowski P, Wandowski T, Ostachowicz W. Damage detection potential of a triangular piezoelectric configuration. Mech. Syst. Signal Process. 2011;25:2722–2732.10.1016/j.ymssp.2011.02.010
  • Giurgiutiu V. Structural health monitoring: with piezoelectric wafer active sensors. Burlington, MA: Academic Press; 2008.
  • Kay S. Fundamentals of statistical signal processing, Vol. II: detection theory. Cloth: Prentice Hall; 1998.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.