275
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

In-situ monitoring of phase transformation in Ti-6Al-6V-2Sn using laser ultrasonics

, , , , &
Pages 130-138 | Received 24 Jan 2017, Accepted 14 Jul 2017, Published online: 30 Aug 2017

References

  • Lutjering G, Williams JC. Titanium. Berlin Heidelberg: Springer; 2007.
  • Boyer R, Welsch G, Collings EW. Material properties handbook: titanium alloys. Materials Park (OH): ASM International; 1994.
  • Hurless B, Froes FH. Lowering the cost of titanium. Amptiac. 2002;6(2):3–9.
  • Martin R, Evans D. Reducing costs in aircraft: the metals affordability initiative consortium. JOM. 2000;52(3):24–28.
  • Barriobero-Vila P, Requena G, Buslaps T, et al. Role of element partitioning on the α–β phase transformation kinetics of a bi-modal Ti-6Al-6V-2Sn alloy during continuous heating. J Alloys Compd. 2015;626:330–339.
  • Elmer JW, Palmer TA, Babu SS, et al. In situ observations of lattice expansion and transformation rates of α and β phases in Ti-6Al-4V. Mater Sci Eng A. 2005;391(1–2):104–113.
  • Kruger SE, Damm EB. Monitoring Austenite decomposition by ultrasonic velocity. Mater Sci Eng A. 2006;425:238–243.
  • Dubois M, Moreau A, Bussiere JF. Ultrasonic velocity measurements during phase transformations in steels using laser ultrasonics. J Appl Phys. 2001;89(11):6487–6495.
  • Liss KD, Bartels A, Schreyer A, et al. High-energy X-Rays: a tool for advanced bulk investigations in materials science and physics. Texture Microstruct. 2003;35:219–252.
  • Malinov S, Sha W, Guo Z, et al. Synchrotron X-ray diffraction study of the phase transformations in titanium alloys. Mater Charact. 2002;48:279–295.
  • Monchalin J-P, Blouin A, Chouqet M, et al. Nondestructive charact mater X. In: Green, et al., editor. Proceedings of the 10 th International Symposium on Nondestructive Characterization of Materials 26--30 June 2000. Karuizawa, Japan; 2001. p. 27–42.
  • Barriobero-Vila P, Requena G, Schwarz S, Warchomicka F, Buslaps T. Influence of phase transformation kinetics on the formation of α in a β-quenched Ti-5Al-5Mo-5V-3Cr-1Zr alloy. Acta Mater. 2015;95:90–101.
  • Falkenstroem M, Engman M, Lindh-Ulmgren E, et al. Laser ultrasonics for process control in the metal industry. Nondestr Test Eval. 2011;26(3–4):237–252.
  • Aussel JD, Monchalin JP. Measurement of ultrasound attenuation by laser ultrasonics. J Appl Phys. 1989;65:2918–2922.
  • Scruby C, Drain L. Laser ultrasonics: techniques and applications. Bristol: IOP Publishing Ltd; 1990.
  • Garcin T, Schmitt JH, Militzer M. In-situ laser ultrasonic grain size measurement in superalloy INCONEL 718. J Alloys Compd. 2016;670:329–336.
  • Smith A, Kruger SE, Sietsma J, et al. Laser ultrasonic monitoring of austenite recrystallization in C-Mn steel. ISIJ Int. 2006;46(8):1223–1232.
  • Kruger SE, Moreau A, Militzer M, et al. In-situ. Laser-ultrasonic monitoring of the recrystallization of aluminum alloys. Mater Sci Forum. 2003;426–432:483–488.
  • Fraizier E, Nadal M-H, Oltra R. Noncontact determination of the elastic moduli of β-Sn up and through the melting point. J Appl Phys. 2003;93:649–654.
  • Zamiri, S, Reitinger B, Grun H, et al. Laser ultrasonic velocity measurement for phase transformation investigation in titanium alloy. In: IEEE International Ultrasonics Symposium (IUS). Prague, Czech Republic; 2013.
  • Senkov ON, Dubois M, Jonas JJ. Elastic moduli of titanium-hydrogen alloys in the temperature range 20 C to 1100 C. Metall Mater Trans A. 1996;27(12):3963–3970.
  • Shinbine A, Garcin T, Sinclair C. In-situ laser ultrasonic measurement of the HCP to BCC transformation in commercially pure titanium. Mater Charact. 2016;117:57–64.
  • Goebbels K. Materials characterization for process control and product conformity. Boca Raton (FL): CRC Press; 1994.
  • Dubois M, Moreau A, Dawson A, et al. Laser ultrasonics measurement of microstructure evolution during metals processing. Brussels, Belgium: RTO MP-9; 1998.
  • Ing RK, Monchalin J-P. Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal. Appl Phys Lett. 1991;59(25):3233–3235.
  • Tecnar.com [Internet]. Quebec (Canada): Tecnar [cited 2016 Nov 15]. Available from: http://www.tecnar.com.
  • http://www.quantel-laser.com/home.html [Internet]. Les Ulis Cedex (France): Quantel Laser [cited 2016 Nov 15]. Available from: http://www.quantel-laser.com/home.html.
  • LUMet-laser-ultrasonic sensor for in-situ metallurgical studies. LUMet White Paper; 2013. Available from: http://gleeble.com/lumet.html.
  • Garcin T, Schmitt J-H, Militzer M. Application of laser ultrasonics to monitor microstructure evolution in Inconel 718 superalloy. In: Matec Web of Conferences. Vol. 14. Giens, France; 2014.
  • Lutterotti L, Matthies S, Wenk H-R, et al. Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. J Appl Phys. 1997;81:594–600.
  • Kube CM. Attenuation of laser generated ultrasound in steel at high temperatures; comparison of theory and experimental measurements. Ultrasonics. 2016;70:238–240.
  • Kino GS. Acoustic waves: devices, imaging, and analog signal processing. Englewood Cliffs (NJ): Prentice-Hal Inc.; 1987.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.