233
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Characterisation of work-hardening in Hadfield steel using non-destructive eddy current method

&
Pages 178-192 | Received 16 Aug 2018, Accepted 07 Feb 2019, Published online: 27 Feb 2019

References

  • Srivastava AK, Das K. Microstructural characterization of Hadfield austenitic manganese steel. J Mater Sci. 2008;43(16):5654–5658.
  • Moghaddam E, Varahram N, Davami P. On the comparison of microstructural characteristics and mechanical properties of high-vanadium austenitic manganese steels with the Hadfield steel. Mater Sci Eng A. 2012;532:260–266.
  • Karaman I, Sehitoglu H, Chumlyakov YI, et al. Extrinsic stacking faults and twinning in Hadfield manganese steel single crystals. Scr Mater. 2001;44(2):337–343.
  • Bayraktar E, Khalid FA, Levaillant C. Deformation and fracture behaviour of high manganese austenitic steel. J Mater Process Technol. 2004;147(2):145–154.
  • Hutchinson B, Ridley N. On dislocation accumulation and work hardening in Hadfield steel. Scr Mater. 2006;55(4):299–302.
  • Sasaki T, Watanabe K, Nohara K, et al. Physical and mechanical properties of high manganese non-magnetic steel and its application to various products for commercial use. Trans Iron Steel Inst Jpn. 1982;22(12):1010–1020.
  • Martín M, Raposo M, Druker A, et al. Influence of pearlite formation on the ductility response of commercial Hadfield steel. Metall Microstruct Anal. 2016;5(6):505–511.
  • Corporation SM. Inconel alloy 625. Special metals. (SMC‐063). Huntington, USA: Inconel alloy 625. Special Metals Corporation (SMC-063); 2006.
  • Metals AAS. Titanium Ti-6Al-4V (Grade 5), ASM material data sheet. Florida, USA: ASM Aerospace Specification Metals Inc.; 2004.
  • Metals AAS. Aluminium 6061-t6; 6061-t651. ASM material data sheet. Florida, USA: ASM Aerospace Specification Metals Inc.; 2012.
  • Efstathiou C, Sehitoglu H. Strain hardening and heterogeneous deformation during twinning in Hadfield steel. Acta Materialia. 2010;58(5):1479–1488.
  • Abbasi M, Kheirandish S, Kharrazi Y, et al. On the comparison of the abrasive wear behavior of aluminum alloyed and standard Hadfield steels. Wear. 2010;268(1–2):202–207.
  • Bracke L, Kestens L, Penning J. Direct observation of the twinning mechanism in an austenitic Fe–mn–C steel. Scr Mater. 2009;61(2):220–222.
  • Canadinc D, Efstathiou C, Sehitoglu H. On the negative strain rate sensitivity of Hadfield steel. Scr Mater. 2008;59(10):1103–1106.
  • Ding H, Ding H, Song D, et al. Strain hardening behavior of a TRIP/TWIP steel with 18.8% Mn. Mater Sci Eng A. 2011;528(3):868–873.
  • Bouaziz O, Allain S, Scott C, et al. High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships. Curr Opin Solid State Mater Sci. 2011;15(4):141–168.
  • Chumlyakov YI, Kireeva I, Litvinova E, et al., eds.. High-strength single crystals of austenitic stainless steels with nitrogen content: mechanisms of deformation and fracture. Mater Sci Forum. 1999;318:395–400..
  • Adler P, Olson G, Owen W. Strain hardening of Hadfield manganese steel. Metall Mater Trans A. 1986;17(10):1725–1737.
  • Dastur Y, Leslie W. Mechanism of work hardening in Hadfield manganese steel. Metall Trans A. 1981;12(5):749–759.
  • Raghavan K, Sastri A, Marcinkowski M. Nature of the work-hardening behavior in hadfields manganese steel. Trans Met Soc AIME. 1969;245(7):1569–1575.
  • Owen W, Grujicic M. Strain aging of austenitic Hadfield manganese steel. Acta Materialia. 1998;47(1):111–126.
  • Karaman I, Sehitoglu H, Gall K, et al. On the deformation mechanisms in single crystal Hadfield manganese steels. Scr Mater. 1998;38(6):1009–1015.
  • Karaman I, Sehitoglu H, Gall K, et al. Deformation of single crystal Hadfield steel by twinning and slip. Acta Materialia. 2000;48(6):1345–1359.
  • Karaman I, Sehitoglu H, Beaudoin A, et al. Modeling the deformation behavior of Hadfield steel single and polycrystals due to twinning and slip. Acta Materialia. 2000;48(9):2031–2047.
  • Qian L, Feng X, Zhang F. Deformed microstructure and hardness of Hadfield high manganese steel. Mater Trans. 2011;52(8):1623–1628.
  • Kashefi M, Kahrobaee S, Nateq MH. On the relationship of magnetic response to microstructure in cast iron and steel parts. J Mater Eng Perform. 2012;21(7):1520–1525.
  • Hashmi J, Khan M, Khan M, et al. Evaluation of eddy current signatures for predicting different heat treatment effects in chromium–vanadium (CrV) spring steel. Proceedings of the institution of mechanical engineers, part L. J Mater Design Appl. 2017;231(3):259–271.
  • Ruch M, Cosarinsky G, Kopp M, et al. Non-destructive characterisation of laser hardened steels. Part 2: metallography and residual stresses. Insight-Non-Destructive Test Condition Monit. 2017;59(6):311–317.
  • Cosarinsky G, Kopp M, Rabung M, et al. Non-destructive characterisation of laser-hardened steels. Insight-Non-Destructive Test Condition Monit. 2014;56(10):553–559.
  • Amiri MS, Kashefi M. Application of eddy current nondestructive method for determination of surface carbon content in carburized steels. NDT E Int. 2009;42(7):618–621.
  • Kashefi M, Kahrobaee S. Dual-frequency approach to assess surface hardened layer using NDE technology. J Mater Eng Perform. 2013;22(4):1108–1112.
  • O’sullivan D, Cotterell M, Meszaros I. The characterisation of work-hardened austenitic stainless steel by NDT micro-magnetic techniques. NDT E Int. 2004;37(4):265–269.
  • Liu K, Zhao Z, Zhang Z. Eddy current assessment of the cold rolled deformation behavior of AISI 321 stainless steel. J Mater Eng Perform. 2012;21(8):1772–1776.
  • Khan S, Ali F, Khan AN, et al. Eddy current detection of changes in stainless steel after cold reduction. Comput Mater Sci. 2008;43(4):623–628.
  • Shaira M, Guy P, Courbon J, et al. Monitoring of martensitic transformation in austenitic stainless steel 304 L by eddy currents. Res Nondestr Eval. 2010;21(2):112–126.
  • Astudillo MRN, Nicolás MN, Ruzzante J, et al. Correlation between martensitic phase transformation and magnetic Barkhausen noise of AISI 304 steel. Procedia Mater Sci. 2015;9:435–443.
  • Vincent A, Pasco L, Morin M, et al. Magnetic Barkhausen noise from strain-induced martensite during low cycle fatigue of 304L austenitic stainless steel. Acta Materialia. 2005;53(17):4579–4591.
  • Haušild P, Kolařík K, Karlík M. Characterization of strain-induced martensitic transformation in A301 stainless steel by Barkhausen noise measurement. Mater Des. 2013;44:548–554.
  • Savin A, Fava J, Spinosa C, et al. Study of the reverse martensitic transformation using non-destructive electromagnetic and materials characterization techniques. Electromagn Nondestr Eval (XX). 2017;42:67.
  • Fava J, Spinosa C, Ruch M, et al. Characterization of reverse martensitic transformation in cold-rolled austenitic 316 stainless steel. Matéria (Rio de Janeiro). 2018;23(2).
  • Ruch M, Fava J, Spinosa C, et al., eds. Characterization of cold rolling-induced martensite in austenitic stainless steels. Proceedings of the 19th World Conference on Non-Destructive Testing 2016; Munich, Germany; 2016.
  • Sahebalam A, Kashefi M, Kahrobaee S. Comparative study of eddy current and Barkhausen noise methods in microstructural assessment of heat treated steel parts. Case Stud NondestrTest Eval. 2014;29(3):208–218.
  • Kahrobaee S, Kashefi M. Electromagnetic nondestructive evaluation of tempering process in AISI D2 tool steel. J Magn Magn Mater. 2015;382:359–365.
  • Asgari S, El-Danaf E, Kalidindi SR, et al. Strain hardening regimes and microstructural evolution during large strain compression of low stacking fault energy fcc alloys that form deformation twins. Metall Mater Trans A. 1997;28(9):1781–1795.
  • Kalidindi SR. Modeling the strain hardening response of low SFE FCC alloys. Int J Plast. 1998;14(12):1265–1277.
  • Bouaziz O, Guelton N. Modelling of TWIP effect on work-hardening. Mater Sci Eng A. 2001;319:246–249.
  • Ghanei S, Kashefi M, Mazinani M. Eddy current nondestructive evaluation of dual phase steel. Mater Des. 2013;50:491–496.
  • Kahrobaee S, Haghighi MS, Akhlaghi IA. Improving nondestructive characterization of dual phase steels using data fusion. J Magn Magn Mater. 2018;458:317–326.
  • Jolfaei M, Shen J, Smith A, et al. Non-destructive measurement of microstructure and tensile strength in varying thickness commercial DP steel strip using an EM sensor. J Magn Magn Mater. 2019;473:477–483.
  • Shull PJ. Nondestructive evaluation: theory, techniques, and applications. New York: Marcel Dekker, Inc.; 2002.
  • Hagemaier DJ, Hagemaier DJ. Fundamentals of eddy current testing. American Society for Nondestructive Testing. Columbus, OH: ASNT; 1990.
  • ASTM E1004-09. Standard test method for determining electrical conductivity using the electromagnetic (Eddy-Current) method. West Conshohocken, Pennsylvania: ASTM International; 2009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.